Состав газовой турбины. Что лучше, надежнее, экономичнее для автономной электростанции: газопоршневые или газотурбинные силовые агрегаты? Газопоршневые установки против газотурбинных двигателей - выводы

Паровая турбина. Попытки сконструировать паровую турбину, способную конкурировать с паровой машиной, до середины XIX в. были безуспешными, так как в механическую энергию вращения турбины удавалось преобразовать лишь незначительную долю кинетической энергии струи пара. Дело в том, что изобретатели

не учитывали зависимость КПД турбины от соотношения скорости пара и линейной скорости лопаток турбины.

Выясним, при каком соотношении скорости струи газа и линейной скорости лопатки турбины произойдет наиболее полная передача кинетической энергии струи газа лопатке турбины (рис. 36). При полной передаче кинетической энергии пара лопатке турбины скорость струи относительно Земли должна быть равна нулю, т.е.

В системе отсчета, движущейся со скоростью скорость струи равна: .

Так как в этой системе отсчета лопатка в момент взаимодействия со струей неподвижна, то скорость струи после упругого отражения остается неизменной по модулю, но меняет направление на противоположное:

Переходя вновь в систему отсчета, связанную с Землей, получим скорость струи после отражения:

Так как то

Мы получили, что полная передача кинетической энергии струи турбине будет происходить при условии, когда линейная скорость движения лопаток турбины вдвое меньше скорости струи Первая паровая турбина, нашедшая практическое применение, была изготовлена шведским инженером Густавом Лавалем в 1889 г. Ее мощность была меньше при частоте вращения об/мин.

Рис. 36. Передача кинетической энергии струи пара лопатке турбины

Большая скорость истечения газа даже при средних перепадах давлений, составляющая примерно 1200 м/с, требует для эффективной работы турбины придания ее лопаткам линейной скорости около 600 м/с. Следовательно, для достижения высоких значений КПД турбина должна быть быстроходной. Нетрудно подсчитать силу инерции, действующую на лопатку турбины массой 1 кг, расположенную на ободе ротора радиусом 1 м, при скорости лопатки 600 м/с:

Возникает принципиальное противоречие: для экономичной работы турбины требуются сверхзвуковые скорости вращения ротора, но при таких скоростях турбина разрушится силами инерции. Для разрешения этого противоречия приходится конструировать турбины, вращающиеся со скоростью, меньшей оптимальной, но для полного использования кинетической энергии струи пара делать их многоступенчатыми, насаживая на общий вал несколько роторов возрастающего диаметра. Из-за недостаточно большой скорости вращения турбины пар отдает только часть своей кинетической энергии ротору меньшего диаметра. Затем отработавший в первой ступени пар направляется на второй ротор большего диаметра, отдавая его лопаткам часть оставшейся кинетической энергии и т. д. Отработавший пар конденсируется в охладителе-конденсаторе, а теплая вода направляется в котел.

Цикл паротурбинной установки в координатах показан на рисунке 37. В котле рабочее тело получает количество тепла нагревается и расширяется при постоянном давлении (изобара АВ). В турбине пар адиабатически расширяется (адиабата ВС), совершая работу по вращению ротора. В конденсаторе-охладителе, омываемом, например, речной водой, пар отдает воде количество тепла и конденсируется при постоянном давлении. Этому процессу соответствует изобара . Теплая вода из конденсатора насосом подается в котел. Этому процессу соответствует изохора Как видно, цикл паротурбинной установки замкнутый. Работа пара за один цикл численно равна площади фигуры ABCD.

Современные паровые турбины обладают высоким КПД преобразования кинетической

Рис. 37. Диаграмма рабочего цикла паротурбинной установки

энергии струи пара в механическую энергию, несколько превышающим 90%. Поэтому электрические генераторы практически всех тепловых и атомных электростанций мира, дающие более 80% всей вырабатываемой электроэнергии, приводятся в действие паровыми турбинами.

Так как температура пара, применяемого в современных паротурбинных установках, не превышает 580 С (температура нагревателя ), а температура пара на выходе из турбины обычно не ниже 30 °С (температура холодильника ), максимальное значение КПД паротурбинной установки как тепловой машины равно:

а реальные значения КПД паротурбинных конденсационных электростанций достигают лишь около 40%.

Мощность современных энергоблоков котел - турбина - генератор достигает кВт. На очереди в 10-й пятилетке сооружение энергоблоков мощностью до кВт.

Паротурбинные двигатели нашли широкое применение на водном транспорте. Однако их применению на сухопутном транспорте и тем более в авиации препятствует необходимость иметь топку и котел для полу ения пара, а также большое количество воды для использования в качестве рабочего тела.

Газовые турбины. Мысль об устранении топки и котла в тепловой машине с турбиной путем перенесения места сжигания топлива в само рабочее тело давно занимала конструкторов. Но разработка таких турбин внутреннего сгорания, в которых рабочим телом является не пар, а расширяющийся от нагревания воздух, сдерживалась отсутствием материалов, способных работать длительное время при высоких температурах и больших механических нагрузках.

Газотурбинная установка состоит из воздушного компрессора 1, камер сгорания 2 и газовой турбины 3 (рис. 38). Компрессор состоит из ротора, укрепленного на одной оси с турбиной, и неподвижного направляющего аппарата.

При работе турбины ротор компрессора вращается. Лопатки ротора имеют такую форму, что при их вращении давление перед компрессором понижается, а за ним повышается. Воздух засасывается в компрессор, и давление его за первым рядом лопаток ротора повышается. За первым рядом лопаток ротора расположен ряд лопаток неподвижного направляющего аппарата компрессора, с помощью которого изменяется направление движения воздуха и обеспечивается возможность его дальнейшего сжатия с помощью лопаток второй ступени ротора и т. д. Несколько ступеней лопаток компрессора обеспечивают позышенне давления воздуха в 5-7 раз.

Процесс сжатия протекает адиабатически, поэтому температура воздуха значительно повышается, достигая 200 °С и более.

Рис. 38. Устройство газотурбинной установки

Сжатый воздух поступает в камеру сгорания (рис. 39). Одновременно через форсунку в нее впрыскивается под большим давлением жидкое топливо - керосин, мазут.

При горении топлива воздух, служащий рабочим телом, получает некоторое количество тепла и нагревается до температуры 1500-2200 °С. Нагревание воздуха происходит при постоянном давлении, поэтому воздух расширяется и скорость его движения увеличивается.

Движущиеся с большой скоростью воздух и продукты горения направляются в турбину. Переходя от ступени к ступени, они отдают свою кинетическую энергию лопаткам турбины. Часть полученной турбиной энергии расходуется на вращение компрессора, а остальная используется, например, для вращения винта самолета или ротора электрического генератора.

Для предохранения лопаток турбины от разрушающего действия раскаленной и высокоскоростной газовой струи в камеру сгорания

Рис. 39. Камера сгорания

нагнетается с помощью компрессора значительно больше воздуха, чем необходимо для полного сжигания топлива. Воздух, входящий в камеру сгорания за зоной горения топлива (рис. 38), снижает температуру газовой струи, направляемой на лопатки турбины. Понижение температуры газа в турбине ведет к снижению КПД, поэтому ученые и конструкторы ведут поиски путей повышения верхнего предела рабочей температуры в газовой турбине. В некоторых современных авиационных газотурбинных двигателях температура газа перед турбиной достигает 1330 °С.

Отработавший воздух вместе с продуктами сгорания при давлении, близком к атмосферному, и температуре более 500 °С со скоростью более 500 м/с обычно выбрасывается в атмосферу либо для повышения КПД направляется в теплообменник, где отдает часть тепла на нагревание воздуха, поступающего в камеру сгорания.

Цикл работы газотурбинной установки на диаграмме представлен на рисунке 40. Процессу сжатия воздуха в компрессоре соответствует адиабата АВ, процессу нагревания и расширения в камере сгорания - изобара ВС. Адиабатический процесс расширения горячего газа в турбине представлен участком CD, процесс охлаждения и уменьшения объема рабочего тела представлен изобарой DA.

КПД газотурбинных установок достигает значений 25-30%. У газотурбинных двигателей нет громоздких паровых котлов, как у паровых машин и паровых турбин, нет поршней и механизмов, преобразующих возвратно-поступательное движение во вращательное, как у паровых машин и двигателей внутреннего сгорания. Поэтому газотурбинный двигатель занимает втрое меньше места, чем дизель той же мощности, а его удельная масса (отношение массы к мощности) в 6 - 9 раз меньше, чем у авиационного поршневого двигателя внутреннего сгорания. Компактность и быстроходность в сочетании с большой мощностью на единицу массы определили первую практически важную область применения газотурбинных двигателей - авиацию.

Самолеты с винтом, насаженным на вал газотурбинного двигателя, появились в 1944 г. Турбовинтовые двигатели имеют такие известные самолеты, как АН-24, ТУ-114, ИЛ-18, АН-22 - «Антей».

Максимальная масса «Антея» на взлете 250 т, грузоподъемность 80 т, или 720 пассажиров,

Рис. 40. Диаграмма рабочего цикла газотурбинной установки

скорость 740 км/ч, мощность каждого из четырех двигателей кВт.

Газотурбинные двигатели начинают вытеснять паротурбинные на водном транспорте, особенно на кораблях военно-морского флота. Переход от дизельных двигателей на газотурбинные позволил увеличить грузоподъемность судов на подводных крыльях в четыре раза, с 50 до 200 т.

Газотурбинные двигатели мощностью 220-440 кВт устанавливаются на большегрузных автомобилях. Проходит испытание в горнодобывающей промышленности 120-тонный БелАЗ-549В с газотурбинным двигателем.

Разработка новых типов ГТУ, растущие темпы спроса на газ по сравнению с другими видами топлива, масштабные планы промышленных потребителей по созданию собственных мощностей обуславливают растущий интерес к газотурбинному строительству.

Р ынок малой генерации имеет большие перспективы развития. Эксперты прогнозируют увеличение спроса на распределенную энергетику с 8% (на текущий момент) до 20% (к 2020 году). Подобная тенденция объясняется сравнительно низким тарифом на электроэнергию (в 2-3 раза ниже, чем тариф на э/энергию от централизованной сети). Кроме этого, по словам Максима Загорнова, члена генерального совета «Деловой России», президента Ассоциации малой энергетики Урала, директора группы компаний «МКС», малая генерация надежнее сетевой: в случае аварии на внешней сети снабжение электроэнергией не прекращается. Дополнительное преимущество децентрализованной энергетики - скорость ввода в эксплуатацию: 8-10 месяцев в отличие от 2-3 лет создания и присоединения сетевых линий.

Сопредседатель комитета «Деловой России» по энергетике Денис Черепанов утверждает, что за собственной генерацией будущее. По словам первого заместителя председателя комитета Государственной Думы по энергетике Сергея Есякова, в случае распределенной энергетики в цепочке «энергия - потребитель» решающим звеном является именно потребитель, а не энергетика. При собственной генерации электроэнергии потребитель заявляет необходимые мощности, комплектации и даже вид топлива, экономя, при этом, на цене киловатта полученной энергии. Кроме прочего, эксперты считают, что можно получить дополнительную экономию, если реализовать работу энергоустановки в режиме когенерации: утилизированная тепловая энергия пойдет на отопление. Тогда срок окупаемости генерирующей энергоустановки значительно снизится.

Наиболее активно развивающимся направлением распределенной энергетики является строительство газотурбинных электростанций малой мощности. Газотурбинные электростанции предназначены для эксплуатации в любых климатических условиях в качестве основного или резервного источника электроэнергии и тепла для объектов производственного и бытового назначения. Использование таких электростанций в отдаленных районах позволяет получить значительную экономию средств за счет исключения издержек на строительство и эксплуатацию протяженных линий электропередач, а в центральных районах - повысить надежность электрического и теплового снабжения как отдельных предприятий и организаций, так и территорий в целом. Рассмотрим некоторые газовые турбины и газотурбинные установки, которые предлагают для строительства газотурбинных электростанций на рынке России известные производители.

General Electric

Решения GE на основе аэропроизводных турбин отличаются высокой надежностью и подходят для применения в целом ряде отраслей: от нефтегазой промышленности до ЖКХ. В частности, в малой генерации активно используются газотурбинные установки GE семейства LM2500 мощностью от 21 до 33 МВт и КПД до 39%. LM2500 применяют в качестве механического привода и привода электрогенератора, они работают на электростанциях в простом, комбинированном цикле, режиме когенерации, морских платформах и трубопроводах.

За последние 40 лет турбины GE данной серии являются наиболее продаваемыми в своем классе. Всего в мире установлено более 2000 турбин данной модели с общей наработкой более 75 миллионов часов.

Основные характеристики турбин LM2500: легковесная и компактная конструкция для быстрого монтажа и простоты обслуживания; выход на полную мощность с момента запуска за 10 минут; высокие показатели КПД (в простом цикле), надежности и доступности в своем классе; возможность использования двухтопливных камер сгорания для дистиллята и природного газа; возможность использования в качестве топлива керосина, пропана, коксового газа, этанола и СПГ; низкий уровень выбросов NOx с использованием камер сгорания DLE или SAC; коэффициент надежности - более 99%; коэффициент готовности - более 98%; выбросы NOx - 15 ppm (модификация DLE).

Для обеспечения клиентов надежной поддержкой на всем протяжении жизненного цикла генерирующего оборудования GE открыла специализированный Центр энергетических технологий в Калуге. Он предлагает заказчикам современные решения для обслуживания, инспекции и ремонта газовых турбин. На предприятии внедрена система менеджмента качества в соответствии со стандартом ISO 9001.

Kawasaki Heavy Industries

Японская компания Kawasaki Heavy Industries, Ltd. (KHI) - многопрофильная машиностроительная компания. Важное место в ее производственной программе занимают газовые турбины.

В 1943 году Kawasaki создала первый в Японии газотурбинный двигатель и в настоящее время является одним из признанных мировых лидеров в производстве ГТУ малой и средней мощности, накопив референции по более, чем 11 000 установок.

Имея в приоритете экологичность и эффективность, компания достигла больших успехов в развитии газотурбинных технологий и активно ведет перспективные разработки, в том числе, в области новых источников энергии в качестве альтернативы ископаемому топливу.

Имея в активе хорошие наработки в криогенных технологиях, технологиях производства, хранения и транспортировки сжиженных газов, Kawasaki ведет активные исследования и ОКР в области применения водорода как топлива.

В частности, уже сейчас компания имеет опытные образцы турбин, использующих водород как добавку к метановому топливу. В перспективе ожидаются турбины, для которых, намного более калорийный и абсолютно экологически безопасный, водород заменит углеводороды.

ГТУ Kawasaki серий GPB спроектированы для работы в базовой нагрузке, включая как параллельные, так и изолированные схемы взаимодействия с сетью, при этом основу мощностного ряда составляют машины от 1,7 до 30 МВт.

В модельном ряду есть турбины, использующие для подавления вредных выбросов инжекцию пара, и применяющие доработанную инженерами компанию технологию DLE.

Электрический КПД, в зависимости от цикла генерации и мощности, соответственно, от 26,9% у GPB17 и GPB17D (турбины M1A-17 и M1A-17D) до 40,1% у GPB300D (турбина L30A). Электрическая мощность - от 1700 до 30 120 кВт; тепловая мощность - от 13 400 до 8970 кДж/кВтч; температура выхлопных газов - от 521 до 470°С; расход выхлопных газов - от 29,1 до 319,4 тыс. м3/ч; NOx (при 15% О2) - 9/15 ppm для газовых турбин M1А-17D, М7А-03D, 25 ppm - для турбины M7A-02D и 15 ppm для турбин L20A и L30A.

По эффективности ГТУ Kawasaki, каждая в своем классе, являются либо мировым лидером, либо одним из лидеров. Общая тепловая эффективность энергоблоков в когенерационных конфигурациях достигает 86-87%. Ряд ГТУ компания выпускает в двухтопливном (природный газ и жидкое топливо) исполнении с автоматическим переключением. У российских потребителей в настоящий момент наиболее востребованы три модели ГТУ - GPB17D, GPB80D и GPB180D.

Газовые турбины Kawasaki отличают: высокая надежность и большой ресурс; компактный дизайн, что особенно привлекательно при замене оборудования существующих генерирующих мощностей; удобство обслуживания за счет разрезной конструкции корпуса, съемных горелок, оптимально расположенных инспекционных отверстий и др., что упрощает осмотр и техобслуживание, в том числе силами персонала пользователя;

Экологичность и экономичность. Камеры сгорания турбин Kawasaki спроектированы с применением самых передовых методов, что позволило оптимизировать процесс горения и достичь лучших показателей эффективности турбины, а также уменьшить содержание NOx и других вредных веществ в выхлопе. Экологические показатели улучшены также за счет применения доработанной технологии сухого подавления выбросов (DLE);

Возможность использования широкого спектра топлив. Могут применяться природный газ, керосин, дизельное топливо, легкие мазуты типа «А», а также попутный нефтяной газ;

Надежное послепродажное обслуживание. Высокий уровень обслуживания, включая бесплатную систему онлайн-мониторинга (TechnoNet) с предоставлением отчетов и прогнозов, техническую поддержку силами высококвалифицированного персонала, а также замену по трейд-ин газотурбинного двигателя в ходе капитального ремонта (простой ГТУ сокращается до 2-3 недель) и т.д.

В сентябре 2011 г. Kawasaki представила новейшую систему камеры сгорания, позволившую опустить уровень выбросов NOx до менее чем 10 ppm для газотурбинного двигателя M7A-03, что даже ниже, чем требуют нынешние нормативы. Один из подходов компании к проектированию состоит в том, чтобы создавать новую технику, отвечающую не только современным, но и будущим, более жестким, требованиям к экологическим показателям.

В высокоэффективной ГТУ GPB50D класса 5 МВт с турбиной Kawasaki M5A-01D применены новейшие апробированные технологии. Высокая эффективность установки делает ее оптимальной для электро- и когенерации. Также компактный дизайн GPB50D особенно выгоден при модернизации существующих предприятий. Номинальный электрический КПД 31,9% - лучший в мире среди установок класса 5 МВт.

Турбина M1A-17D за счет применения камеры сгорания оригинальной конструкции с сухим подавлением выбросов (DLE) имеет отличные для своего класса показатели экологичности (NOx < 15 ppm) и эффективности.

Сверхнизкий показатель массы турбины (1470 кг), минимальный в классе, обусловлен широким применением композитных материалов и керамики, из которых изготовлены, например, лопатки рабочего колеса. Керамика более устойчива к работе при повышенных температурах, менее склонна к загрязнению, чем металлы. ГТУ имеет электрический КПД близкий к 27%.

В России к настоящему времени Kawasaki Heavy Industries, Ltd. в сотрудничестве с российскими компаниями реализовала ряд успешных проектов:

Мини-ТЭС «Центральная» во Владивостоке

По заказу АО «Дальневосточной энергетической управляющей компании» (АО «ДВЭУК») для ТЭС «Центральная» поставлено 5 ГТУ GPB70D (M7A-02D). Станция обеспечивает электроэнергией и теплом потребителей центральной части застройки острова Русский и кампус Дальневосточного федерального университета. ТЭС «Центральная» - первый энергообъект в России с турбинами Kawasaki.

Мини-ТЭС «Океанариум» во Владивостоке

Этот проект также осуществлен ОАО «ДВЭУК» для энергоснабжения расположенного на острове научно-образовательного комплекса «Приморский океанариум». Поставлено две ГТУ GPB70D.

ГТУ производства Kawasaki в ПАО «Газпром»

Российский партнер Kawasaki, ООО «МПП Энерготехника», на основе газовой турбины M1A-17D выпускает контейнерную электростанцию «Корвет 1,7К» для установки на открытых площадках с диапазоном температур окружающего воздуха от -60 до + 40 °С.

В рамках договора о сотрудничестве разработаны и на производственных мощностях «МПП «Энерготехника» собраны пять ЭГТЭС КОРВЕТ-1,7К. Зоны ответственности компаний в данном проекте распределялись следующим образом: Kawasaki поставляет газотурбинный двигатель M1A-17D и системы управления турбиной, Siemens AG - высоковольтный генератор. ООО «МПП «Энерготехника» производит блок-контейнер, выхлопное и воздухозаборное устройство, систему управления энергоблоком (в том числе систему возбуждения ШУВГм), электротехническое оборудование - основное и вспомогательное, комплектует все системы, осуществляет сборку и поставку комплектной электростанции, а также - реализацию АСУ ТП.

ЭГТЭС Корвет-1,7К прошла межведомственные испытания и рекомендована для применения на объектах ПАО «Газпром». Газотурбинный энергоблок разработан ООО «МПП «Энерготехника» по техническому заданию ПАО «Газпром» в рамках Программы научно-технического сотрудничества ПАО «Газпром» и Агентства природных ресурсов и энергетики Японии.

Турбина для ПГУ 10 МВт в НИУ МЭИ

Kawasaki Heavy Industries Ltd., изготовила и поставила комплектную газотурбинную установку GPB80D номинальной мощностью 7,8 MВт для Национального Исследовательского Университета «МЭИ», расположенного в Москве. ТЭЦ МЭИ является учебно-практической и, вырабатывая электричество и тепло в промышленных масштабах, обеспечивает ими сам Московский энергетический институт и поставляет их в коммунальные сети г. Москвы.

Расширение географии проектов

Компания Kawasaki, обращая внимание на преимущества развития местной энергетики в направлении распределенной генерации, предложила начать реализацию проектов с применением газотурбинных установок минимальной мощности.

Mitsubishi Hitachi Power Systems

Модельный ряд турбин Н-25 представлен в диапазоне мощности 28-41 МВт. Полный комплекс работ по производству турбины, включая НИОКР и центр удаленного мониторинга, осуществляется на заводе в г. Хитачи, Япония, компанией MHPS (Mitsubishi Hitachi Power Systems Ltd.). Ее образование приходится на февраль 2014 г. благодаря слиянию генерирующих секторов признанных лидеров машиностроения Mitsubishi Heavy Industries Ltd. и Hitachi Ltd.

Модели H-25 нашли широкое применение по всему миру для работы как в простом цикле благодаря высокому КПД (34-37%), так и в комбинированном цикле в конфигурации 1×1 и 2×1 с КПД 51-53%. Имея высокие температурные показатели выхлопных газов, ГТУ также успешно зарекомендовала себя для работы в режиме когенерации с суммарным КПД станции более 80%.

Многолетние компетенции в производстве газовых турбин широкого диапазона мощностей и продуманный дизайн одновальной индустриальной турбины отличают Н-25 высокой надежностью с коэффициентом готовности оборудования более 99%. Суммарное время наработки модели превысило 6,3 млн ч за второе полугодие 2016 г. Современная ГТУ выполнена с горизонтальным осевым разъемом, что обеспечивает удобство ее обслуживания, а также возможность замены частей горячего тракта по месту эксплуатации.

Противоточная трубчато-кольцевая камера сгорания обеспечивает стабильное горение на различных видах топлива, таких как природный газ, дизельное топливо, сжиженный нефтяной газ, уходящие топочные газы, коксовый газ и пр. Камера может быть выполнена в варианте с диффузионным режимом горения, а также сухой низкоэмиссионной предварительного смешивания газовоздушной смеси (DLN). Газотурбинный двигатель H-25 представляет собой 17-ступенчатый осевой компрессор, соединенный с трехступенчатой активной турбиной.

Примером надежной эксплуатации ГТУ Н-25 на объектах малой генерации в России является работа в составе когенерационного блока для собственных нужд завода АО «Аммоний» в г. Менделеевске, Республика Татарстан. Когенерационный блок обеспечивает производственную площадку электроэнергией 24 МВт и паром 50 т/ч (390°С / 43 кг/см3). В ноябре 2017 г. на площадке была успешно проведена первая инспекция системы сгорания турбины, подтвердившая надежную работу узлов и агрегатов машины в условиях высоких температур.

В нефтегазовом секторе ГТУ Н-25 были применены для работы площадки объединенного берегового технологического комплекса (ОБТК) Сахалин II компании «Сахалин Энерджи Инвестмент Компани, Лтд.» ОБТК расположен в 600 км к северу от Южно-Сахалинска в районе выхода на берег морского газопровода и является одним из наиболее важных объектов компании, отвечающим за подготовку газа и конденсата для последующей передачи по трубопроводу на терминал отгрузки нефти и завод по производству СПГ. В состав технологического комплекса входят четыре газовые турбины Н-25, находящиеся в промышленной эксплуатации с 2008 г. Когенерационный блок на базе ГТУ Н-25 максимально интегрирован в комплексную энергосистему ОБТК, в частности, тепло выхлопных газов турбины используется для подогрева сырой нефти для нужд нефтепереработки.

Промышленные генераторные газотурбинные установки «Сименс» (далее ГТУ) помогут справиться с трудностями динамично развивающегося рынка распределенной генерации. ГТУ единичной номинальной мощностью от 4 до 66 МВт полностью отвечают высоким требованиям в области промышленной комбинированной выработки энергии, в плане эффективности станции (до 90%), надежности эксплуатации, гибкости обслуживания и экологической безопасности, обеспечивая низкие затраты при полном сроке эксплуатации и высокую отдачу от инвестиций. Опыт компании «Сименс» в области строительства промышленных ГТУ и строительства ТЭС на их базе, насчитывает более чем 100 лет.

ГТУ «Сименс» мощностью от 4 до 66 МВт используются небольшими энергокомпаниями, независимыми производителями электроэнергии (например, промышленными предприятиями), а также в нефтегазовой отрасли. Применение технологий распределенной генерации электроэнергии с комбинированной выработкой тепловой энергии, позволяет отказаться от инвестирования в многокилометровые линии электропередач, минимизировав расстояние между источником энергии и объектом, ее потребляющим, достичь серьезной экономии средств, покрыв отопление промышленных предприятий и объектов инфраструктуры за счет утилизации тепла. Стандартная Мини-ТЭС на базе ГТУ «Сименс» может быть построена в любом месте, где есть доступ к источнику топлива, или оперативного его подвода.

SGT-300 - промышленная ГТУ с номинальной электрической мощностью 7,9 МВт (см. табл. 1), сочетает простую надежную конструкцию и новейшие технологии.

Таблица 1. Характеристики SGT-300 для механического привода и производства энергии

Производство энергии

Мехпривод

7,9 МВт

8 МВт

9 МВт

Мощность в ИСО

Природный газ/жидкое топливо/двух топливная и другие топлива по запросу;

Автоматическая смена топлива с главного на резервное, на любой нагрузке

Уд. расход тепла

11,773 кДж/кВтч

10,265 кДж/кВтч

10,104 кДж/кВтч

Скорость силовой турбины

5,750 - 12,075 об/мин

5,750 - 12,075 об/мин

Степень сжатия

Расход выхлопных газов

Температура выхлопных газов

542 °C (1,008 °F)

491 °C (916 °F)

512 °C (954 °F)

NO X выбросы

Газ топливо с системой DLE

1) Электрическая 2) На валу

Рис. 1. Конструкция газогенератора SGT-300


Для промышленной генерации энергии применяется одновальный вариант ГТУ SGT-300 (см. рис. 1). Она идеально подходит для комбинированного производства тепловой и электрической энергии (ТЭС). ГТУ SGT-300 является промышленной ГТУ, изначально спроектированной для генерации и обладает следующими эксплуатационными преимуществами для эксплуатирующих организаций:

Электрический КПД - 31%, что в среднем выше на 2-3% КПД ГТУ меньшей мощности, благодаря более высокому значению КПД достигается экономический эффект на экономии топливного газа;

Газогенератор укомплектован низкоэмиссионной сухой камерой сгорания по технологии DLE, что позволяет достичь уровня выбросов NOx и CO, более чем в 2,5 раза ниже установленных нормативными документами;

ГТУ имеет хорошие динамические характеристики благодаря одновальной конструкции и обеспечивает устойчивую работу генератора при колебаниях нагрузки внешней присоединенной сети;

Промышленная конструкция ГТУ обеспечивает длительный межремонтный ресурс эксплуатации и является оптимальной с точки зрения организации сервисных работ, которые проводятся на месте эксплуатации;

Существенное снижение пятна застройки, точно также, как и инвестиционных затрат, включающих приобретение общестанционного механического и электрического оборудования, его монтаж и пусконаладку, при применении решения на базе SGT-300 (рис. 2).

Рис. 2. Массогабаритные характеристики блока SGT-300


Общая наработка установленного парка SGT-300 составляет более 6 млн ч, с наработкой лидерного ГТУ 151 тыс. ч. Коэффициент готовности/доступности - 97,3%, коэффициент надежности - 98,2%.

Компания OPRA (Нидерланды) - ведущий поставщик энергетических систем на основе газовых турбин. OPRA разрабатывает, производит и продает современные газотурбинные двигатели мощностью около 2 МВт. Ключевым направлением деятельности компании является производство электроэнергии для нефтегазовой промышленности.

Надежный двигатель OPRA OP16 обеспечивает более высокую производительность при меньшей себестоимости и большем сроке службы, чем какая-либо другая турбина этого класса. Двигатель работает на нескольких видах жидкого и газобразного топлива. Существует модификация камеры сгорания с пониженным содержанием загрязняющих веществ в выхлопе. Энергоустановка OPRA OP16 1,5-2,0 МВт будет надежным помощником в суровых условиях эксплуатации.

Газовые турбины OPRA являются совершенным оборудованием для генерации электроэнергии в автономных электрических и когенерационных системах малой энергетики. Разработка конструкции турбины велась более десяти лет. Результатом стало создание простого, надежного и эффективного газотурбинного двигателя, включая модель с низкими выбросами вредных веществ.

Отличительной особенностью технологии преобразования химической энергии в электрическую в OP16 является запатентованная система управления подготовкой и подачей топливной смеси COFAR, которая обеспечивает режимы горения с минимальным образованием окислов азота и углерода, а также минимум несгоревших остатков топлива. Оригинальной является также запатентованная геометрия радиальной турбины и в целом консольная конструкция сменяемого картриджа, включающего вал, подшипники, центробежный компрессор и турбину.

Специалистами компаний «ОПРА» и «МЭС Инжиниринг» разработана концепция создания уникального единого технического комплекса мусоропереработки. Из 55-60 млн т всех ТБО, образующихся в России за год, пятая часть - 11,7 млн т - приходится на столичный регион (3,8 млн т - Московская область, 7,9 млн т - Москва). При этом за МКАД из Москвы вывозится 6,6 млн т бытовых отходов. Таким образом, в Подмосковье оседает более 10 млн т мусора. С 2013 г. в Московской области из 39 мусорных полигонов закрыты 22. Заменить их должны 13 мусоросортировочных комплексов, которые будут введены в 2018-2019 гг., а также четыре мусоросжигательных завода. Такая же ситуация происходит и в большинстве других регионов. Однако, не всегда строительство крупных мусороперерабатывающих заводов является выгодным, поэтому проблема мусоропереработки очень актуальна.

Разработанная концепция единого технического комплекса объединяет полностью радиальные установки ОПРА, обладающие высокой надежностью и эффективностью, с системой газификации/пиролиза компании «МЭС», которая позволяет обеспечить эффективное превращение различных видов отходов (включая ТБО, нефтешламы, загрязненную землю, биологические и медицинские отходы, отходы деревообработки, шпалы и т.д.) в отличное топливо для выработки тепла и электроэнергии. В результате продолжительного сотрудничества спроектирован и находится в стадии реализации стандартизированный комплекс переработки отходов производительностью 48 т/сут. (рис. 3).

Рис. 3. Общая планировка стандартного комплекса переработки отходов мощностью 48 т/сут.


В состав комплекса включается установка газификации МЭС с площадкой хранения отходов, две ГТУ ОПРА суммарной электрической мощностью 3,7 МВт и тепловой мощностью 9 МВт, а также различные вспомогательные и защитные системы.

Реализация подобного комплекса позволяет на площади 2 га получить возможность для автономного энерго- и теплоснабжения различных производственных и коммунальных объектов, решив при этом вопрос утилизации различных видов бытовых отходов.

Отличия разработанного комплекса от существующих технологий вытекают из уникального сочетания предлагаемых технологий. Малые (2 т/ч) объемы потребляемых отходов, наряду с малой требуемой площадью участка позволяют размещать данный комплекс непосредственно вблизи от небольших поселений, промышленных предприятий и т.п., значительно сэкономив средства на постоянную перевозку отходов к местам их утилизации. Полная автономность комплекса позволяет развернуть его практически в любой точке. Использование разработанного типового проекта, модульных конструкций и максимальная степень заводской готовности оборудования дает возможность максимально сократить сроки строительства до 1-1,5 лет. Применение новых технологий обеспечивает высочайшую экологичность комплекса. Установка газификации «МЭС» вырабатывает одновременно газовую и жидкую фракции топлива, а за счет двухтопливности ГТУ ОПРА они применяются одновременно, что повышает топливную гибкость и надежность энергоснабжения. Низкая требовательность ГТУ ОПРА к качеству топлива повышает надежность всей системы. Установка МЭС позволяет использовать отходы с влажностью до 85%, следовательно, не требуется сушка отходов, что повышает КПД всего комплекса. Высокая температура выхлопных газов ГТУ ОПРА позволяет обеспечивать надежное теплоснабжение горячей водой или паром (до 11 тонн пара в час при 12 бар). Проект является типовым и масштабируемым, что позволяет обеспечить утилизацию любого количества отходов.

Проведенные расчеты показывают, что стоимость выработки электроэнергии будет составлять от 0,01 до 0,03 евро за 1 кВтч, что показывает высокую экономическую эффективность проекта. Таким образом, компания «ОПРА» в очередной раз подтвердила свою направленность на расширение линейки применяемого топлива и повышение топливной гибкости, а также ориентацию на максимальное применение «зеленых» технологий в своем развитии.

В статье рассказывается о том, как вычисляется КПД простейшей ГТУ, даны таблицы разных ГТУ и ПГУ для сравнения их КПД и других характеристик.

В области промышленного использования газотурбинных и парогазовых технологий Россия значительно отстала от пере­довых стран мира.

Мировые лидеры в производстве газовых и парогазовых энергоустановок большой мощности: GE, Siemens Wistinghouse, ABB - достигли значений единичной мощности газотурбинных установок 280-320 МВт и КПД свыше 40 %, с утилизационной паросиловой надстройкой в парогазовом цикле (называемом также бинарным) - мощности 430-480 МВт при КПД до 60 %. Если есть вопросы по надежности ПГУ - то читайте статью.

Эти впечатляющие цифры служат в качестве ори­ентиров при определении путей развития энергомашиностро­ения России.

Как определяется КПД ГТУ

Приведем пару простых формул, чтобы показать, что такое КПД газотурбинной установки:

Внутренняя мощность турбины:

  • Nт = Gух * Lт, где Lт – работа турбины, Gух – расход уходящих газов;

Внутренняя мощность ГТУ:

  • Ni гту = Nт – Nк, где Nк – внутренняя мощность воздушного компрессора;

Эффективная мощность ГТУ:

  • Nэф = Ni гту * КПД мех, КПД мех – КПД связанный с механическими потерями в подшипниках, можно принимать 0,99

Электрическая мощность:

  • Nэл = Ne * КПД эг, где КПД эг – КПД связанный с потерями в электрическом генераторе, можно принять 0,985

Располагаемая теплота топлива:

  • Q расп = Gтоп * Qрн, где Gтоп – расход топлива, Qрн – низшая рабочая теплота сгорания топлива

Абсолютный электрический КПД газотурбинной установки:

  • КПДэ = Nэл/Q расп

КПД ПГУ выше, чем КПД ГТУ так как в Парогазовой установке используется тепло уходящих газов ГТУ. За газовой турбиной устанавливается котел-утилизатор в котором тепло от уходящих газов ГТУ передается рабочему телу (питательной воде) , сгенерированный пар отправляется в паровую турбину для генерации электроэнергии и тепла.

Читайте также: Как выбрать газотурбинную установку для станции с ПГУ

КПД ПГУ обычно представляют соотношением:

  • КПД пгу = КПД гту*B+(1-КПД гту*B)*КПД псу

B – степень бинарности цикла

КПД псу – КПД паросиловой установки

  • B = Qкс/(Qкс+Qку)

Qкс – теплота топлива, сжигаемого в камере сгорания газовой турбины

Qку – теплота дополнительного топлива сжигаемого в котле-утилизаторе

При этом отмечают, что если Qку = 0, то B = 1, т. е. установка является полностью бинар­ной.

Влияние степени бинарности на КПД ПГУ

B КПД гту КПД псу КПД пгу
1 0,32 0,3 0,524
1 0,36 0,32 0,565
1 0,36 0,36 0,590
1 0,38 0,38 0,612
0,3 0,32 0,41 0,47
0,4 0,32 0,41 0,486
0,3 0,36 0,41 0,474
0,4 0,36 0,41 0,495
0,3 0,36 0,45 0,51
0,4 0,36 0,45 0,529

Давайте приведем последовательно таблицы с характеристиками эффективности ГТУ и вслед за ними показатели ПГУ с этими газовыми машинами, и сравним КПД отдельной ГТУ и КПД ПГУ.

Характеристики современных мощных ГТУ

Газовые турбины фирмы ABB

Характеристика Модель ГТУ
GT26ГТУ с промперегревом GT24ГТУ с промперегревом
Мощность ISO МВт 265 183
КПД % 38,5 38,3
30 30
562 391
1260 1260
610 610
50 50

Парогазовые установки с газовыми турбинами ABB

Газовые турбины фирмы GE

Характеристика Модель ГТУ
MS7001FA MS9001FA MS7001G MS9001G
Мощность ISO МВт 159 226,5 240 282
КПД % 35,9 35,7 39,5 39,5
Степень повышения давления компрессора 14,7 14,7 23,2 23,2
Расход рабочего тела на выхлопе ГТУ кг/с 418 602 558 685
Начальная температура, перед рабочими лопатками 1 ст. С 1288 1288 1427 1427
Температура рабочего тела на выхлопе С 589 589 572 583
Частота вращения генератора 1/с 60 50 60 50

Читайте также: Зачем строить Парогазовые ТЭЦ? В чем преимущества парогазовых установок.

Парогазовые установки с газовыми турбинами GE

Характеристика Модель ГТУ
MS7001FA MS9001FA MS7001G MS9001G
Состав газотурбинной части ПГУ 1хMS7001FA 1хMS9001FA 1хMS9001G 1хMS9001H
Модель ПГУ S107FA S109FA S109G S109H
Мощность ПГУ МВт 259.7 376.2 420.0 480.0
КПД ПГУ % 55.9 56.3 58.0 60.0

Газовые турбины фирмы Siemens

Характеристика Модель ГТУ
V64.3A V84.3A V94.3A
Мощность ISO МВт 70 170 240
КПД % 36,8 38 38
Степень повышения давления компрессора 16,6 16,6 16,6
Расход рабочего тела на выхлопе ГТУ кг/с 194 454 640
Начальная температура, перед рабочими лопатками 1 ст. С 1325 1325 1325
Температура рабочего тела на выхлопе С 565 562 562
Частота вращения генератора 1/с 50/60 60 50

Парогазовые установки с газовыми турбинами Siemens

Газовые турбины Westinghouse-Mitsubishi-Fiat

Характеристика Модель ГТУ
501F 501G 701F 701G1 701G2
Мощность ISO МВт 167 235,2 251,1 271 308
КПД % 36,1 39 37 38,7 39
Степень повышения давления компрессора 14 19,2 16,2 19 21
Расход рабочего тела на выхлопе ГТУ кг/с 449,4 553,4 658,9 645 741
Начальная температура, перед рабочими лопатками 1 ст. С 1260 1427 1260 1427 1427
Температура рабочего тела на выхлопе С 596 590 569 588 574
Частота вращения генератора 1/с 60 60 50 50 50

Газовая турбина, как тепловой двигатель, объединяет харак­терные особенности паровой турбины и двигателя внутреннего сго­рания, в котором энергия топлива при его горении превращается непосредственно в механическую работу. Рабочим телом газовых турбин, работающих по открытому циклу, являются продукты сгорания топлива, а рабочим телом газовых турбин, работающих по закрытому циклу,- чистый воздух или газ, непрерывно цирку­лирующий в системе. На судах применяют газотурбинные уста­новки (ГТУ), работающие по открытому циклу, со сгоранием топ­лива при постоянном давлении (р = const) и ГТУ, работающие по закрытому циклу.

В настоящее время судовые ГТУ выполняют двух типов: 1) турбокомпрессорные и 2) со свободно-поршневыми генераторами газа (СПГГ).

Схема простейшей турбокомирессорной газотурбинной уста­новки, работающей при постоянном давлении сгорания топлива представлена на рис. 101. Компрессор 9 засасывает чистый атмо­сферный воздух, сжимает его до высокого давления и подает по воздухопроводу 3 в камеру сгорания 2, куда одновременно через форсунку 1 поступает топливо. Топливо, смешиваясь с воздухом, образует рабочую смесь, которая сгорает при р = const. Образо­вавшиеся продукты сгорания охлаждаются воздухом и направля­ются в проточную часть турбины. В неподвижных лопатках 4 про­дукты сгорания расширяются и с большой скоростью поступают на рабочие лопатки 5, где происходит преобразование кинетиче­ской энергии газового потока в механическую работу вращения вала. По патрубку 6 отработавшие газы уходят из турбины. Газо­вая турбина приводит во вращение компрессор 9 и через редук­тор 7 гребной винт 8. Для запуска установки используется пуско­вой двигатель 10, который раскручивает компрессор до минималь­ной частоты вращения.

На этом же рисунке изображен теоретический цикл рассмот­ренной ГТУ в координатах р - ? и S - Т: AВ - процесс сжатия воздуха в компрессоре; ВС-сгорание топлива при постоянном давлении в камере сгорания; СД- расширение газа в турбине, ДА - отвод тепла от отработавших газов.

Для повышения экономичности работы ГТУ применяют реге­неративный подогрев воздуха, поступающего в камеру сгорания, либо ступенчатое сгорание топлива в нескольких последователь­ных камерах сгорания, которые обслуживают отдельные турбины. Из-за конструктивной сложности ступенчатое сгорание применяют редко. С целью повышения эффективного к. п. д. установки наряду с регенерацией используют двухступенчатое сжатие воздуха, при этом между компрессорами включают промежуточный охладитель воздуха, что сокращает потребную мощность компрессора высо­кого давления.

На рис. 102 дана схема простейшей газотурбинной установки со сгоранием топлива при р = const и регенерацией тепла. Воздух, сжатый в компрессоре 1 , проходит через регенератор 2 в камеру сгорания 3 , где подогревается за счет тепла отработавших газов, покидающих турбину 4 со сравнительно высокой температурой. Действительный цикл этой установки показан на диаграмме S-Т (рис. 103): процесс сжатия воздуха в компрессоре 1 - 2 ; нагрев воздуха в регенераторе, сопровождаемый падением давления от р 2 до р 4 2 - 3; подвод тепла в процессе сгорания топлива 3 - 4; действительный процесс расширения газа в турбинах 4-5 ; охлаж­дение газов в регенераторе, со­провождаемое потерей давле­ния р 5 1 5-6; выпуск га­зов- отвод тепла 6-1 . Коли­чество тепла, полученное воз­духом в регенераторе, изобра­жается площадью 2"-2-3-3", а количество тепла, отданного отходящими газами в регенераторе, площадью 6"-6-5-5". Эти площади равны между собой.

В ГТУ закрытого цикла отработавшее рабочее тело не посту­пает в атмосферу, а после предварительного охлаждения вновь направляется в компрессор. Следовательно, в цикле циркулирует рабочее тело, не загрязненное продуктами сгорания. Это улуч­шает условия работы проточных частей турбин в результате чего повышается надежность работы установки и увеличивается ее мо­торесурс. Продукты сгорания не смешиваются с рабочим телом и поэтому для сжигания пригодно топливо любого вида.

На рис. 104 показана принципиальная схема всережимной су­довой ГТУ закрытого цикла. Воздух после предварительного ох­лаждения в воздухоохладителе 4 поступает в компрессор 5 , кото­рый приводится во вращение турбиной высокого давления 7 . Из компрессора воздух направляется в регенератор 3 , а затем в воздухонагреватель 6, выполняющий ту же роль, что и камера сго­рания в установках открытого типа. Из воздухонагревателя рабо­чий воздух при температуре 700° С поступает в турбину высокого давления 7 , которая вращает компрессор, а затем в турбину низ­кого давления 2 , которая через редуктор 1 приводит в действие винт регулируемого шага. Пусковой электродвигатель 8 предназ­начен для запуска установки в работу. К недостаткам ГТУ закры­того цикла следует отнести громоздкость теплообменников.

Особый интерес представляют ГТУ закрытого цикла с ядерным реактором. В этих установках в качестве рабочего тела газовых турбин (теплоносителя) применяют гелий, азот, углекислый газ. Эти газы не активируются в ядерном реакторе. Нагретый в реакторе до высокой температуры газ непосредственно направляется на работу в газовую турбину.

Основными достоинствами газовых турбин по сравнению с па­ровыми являются: малые вес и габариты, так как отсутствуют ко­тельная и конденсационная установка со вспомогательными меха­низмами и устройствами; быстрый пуск в ход и развитие полной мощности в течение 10-15 мин\ весьма малый расход охлаждаю­щей воды; простота обслуживания.

Основные преимущества газовых турбин по сравнению с дви­гателями внутреннего сгорания являются: отсутствие кривошипно-шатунного механизма и связанных с ним инерционных сил; малые вес и габариты при больших мощностях (ГТУ по весу легче в 2- 2,5 раза и по длине короче в 1,5-2 раза, чем дизели); возмож­ность работы на низкосортном топливе; меньшие эксплуатацион­ные расходы. Недостатки газовых турбин следующие: небольшой срок службы при высоких температурах газа (так, при темпера­туре газа 1173° К срок службы 500-1000 ч); меньшая, чем у ди­зелей, экономичность; значительная шумность при работе.

В настоящее время газовые турбины применяют в качестве главных двигателей морских транспортных судов. В отдельных случаях газовые турбины малой мощности применяют в качестве привода насосов, аварийных электрогенераторов, вспомогатель­ных наддувочных компрессоров и др. Особый интерес представ­ляют газовые турбины как главные двигатели для судов с подвод­ными крыльями и судов на воздушной подушке.

То и дело в новостях говорят, что, к примеру, на такой то ГРЭС полным ходом идет строительство ПГУ -400 МВт, а на другой ТЭЦ-2 включена в работу установка ГТУ-столько то МВт. О таких событиях пишут, их освещают, поскольку включение таких мощных и эффективных агрегатов — это не только «галочка» в выполнении государственной программы, но и реальное повышение эффективности работы электростанций, областной энергосистемы и даже объединенной энергосистемы.

Но довести до сведения хочется не о выполнении госпрограмм или прогнозных показателей, а именно о ПГУ и ГТУ. В этих двух терминах может запутаться не только обыватель, но и начинающий энергетик.

Начнем с того, что проще.

ГТУ — газотурбинная установка — это газовая турбина и электрический генератор, объединенные в одном корпусе. Ее выгодно устанавливать на ТЭЦ. Это эффективно, и многие реконструкции ТЭЦ направлены на установку именно таких турбин.

Вот упрощенный цикл работы тепловой станции:

Газ (топливо) поступает в котел, где сгорает и передает тепло воде, которая выходит из котла в виде пара и крутит паровую турбину. А паровая турбина крутит генератор. Из генератора мы получаем электроэнергию, а пар для промышленных нужд (отопление, подогрев) забираем из турбины при необходимости.

А в газотурбиной установке газ сгорает и крутит газовую турбину, которая вырабатывают электроэнергию, а выходящие газы превращают воду в пар в котле-утилизаторе, т.е. газ работает с двойной пользой: сначала сгорает и крутит турбину, затем нагревает воду в котле.

А если саму газотурбинную установку показать еще более развернуто, то будет выглядеть так:

На этом видео наглядно показано какие процессы происходят в газотурбинной установке.

Но еще больше пользы будет в том случае, если и полученный пар заставить работать — пустить его в паровую турбину, чтобы работал еще один генератор! Вот тогда наша ГТУ станет ПАРО-ГАЗОВОЙ УСАНОВКОЙ (ПГУ).

В итоге ПГУ — это более широкое понятие. Эта установка – самостоятельный энергоблок, где топливо используется один раз, а электроэнергия вырабатывается дважды: в газотурбинной установке и в паровой турбине. Этот цикл очень эффективный, и имеет КПД порядка 57 %! Это очень хороший результат, который позволяет значительно снизить расход топлива на получение киловатт-часа электроэнергии!

В Беларуси для повышения эффективности работы электростанций применяют ГТУ как «надстройку» к существующей схеме ТЭЦ, а ПГУ возводят на ГРЭСах, как самостоятельные энергоблоки. Работая на электростанциях, эти газовые турбины не только повышают «прогнозные технико-экономические показатели», но и улучшают управление генерацией, так как имеют высокую маневренность: быстроту пуска и набора мощности.

Вот какие полезные эти газовые турбины!



Случайные статьи

Вверх