Пуассоновский поток данных классической и. Стационарный пуассоновский поток отказов. Распределение событий в пуассоновском потоке

На практике чаще всего ограничиваются рассмотрением простейшего (пуассоновского) потока заявок.

Определение. Поток событий, обладающий свойствами ординарности, стационарности и отсутствия последействия , называется простейшим (или стационарным пуассоновским) потоком . Для простейшего потока событий вероятность того, что на участке времени длины t наступит ровно k событий, имеет распределение Пуассона и определяется по формуле:

Р{X(t,t) = k} = a k e -a /k! (k=0, 1, 2,…),

где а = lt , l – интенсивность потока.

Физический смысл интенсивности потока событий – это среднее число событий, приходящееся на единицу времени (число заявок в единицу времени), размерность – 1/время.

Простейшим этот поток назван потому, что исследование систем, находящихся под воздействием простейших потоков, проводится самым простым образом.

Распределение интервалов между заявками для простейшего потока будет экспоненциальным (показательным) с функцией распределения и плотностью , где – интенсивность поступления заявок в СМО.

Рассмотрим основные свойства простейшего потока:

Стационарность;

Ординарность;

Отсутствие последействия.

Стационарность . Свойство стационарности проявляется в том, что вероятность попадания того или иного числа событий на участок времени зависит только от длины участка и не зависит от его расположения на оси . Другими словами, стационарность означает неизменность вероятностного режима потока событий во времени. Поток, обладающий свойством стационарности, называют стационарным . Для стационарного потока среднее число событий, воздействующих на систему в течение единицы времени, остаётся постоянным. Реальные потоки событий в экономике предприятия яв­ляются в действительности стационарными лишь на ограниченных участках времени.

Ординарность. Свойство ординарности потока присутствует, если вероятность попадания на элементарный участок времени двух и более событий пренебрежимо мала по сравнению с длиной этого участка. Свойство ординарности означает, что за малый промежуток времени практически невозможно появление более одного события. Поток, обладающий свойством ординарности, называют ор­динарным. Реальные потоки событий в различных экономических системах либо являются ординарными, либо могут быть достаточно просто приведены к ординарным.

Отсутствие последействия . Данное свойство потока состоит в том, что для любых непересекающихся участков времени количество событий, попадающих на один из них, не зависит от того, сколько событий попало на другие участки времени. Поток, обладающий свойством отсутствия последействия, называют потоком без последействия .


Поток событий, одновременно обладающий свойствами стационарности, ординарности и отсутствия последействия, называется простейшим потоком событий.

2.6. Компоненты и классификация

моделей систем массового обслуживания (СМО)

Первые задачи теории систем массового обслуживания (ТСМО) были рассмотрены сотрудниками Копенгагенской телефонной компании, датским учёным А. К. Эрлангом (1878–1929 гг.) в период между 1908 и 1922 гг. Эти задачи были вызваны к жизни стремлением упорядочить работу телефонной сети и разработать методы, позволяющие заранее повысить качество обслуживания потребителей в зависимости от числа используемых устройств. Оказалось, что ситуации, возникающие на телефонных станциях, являются типичными не только для телефонной связи. Работа аэродромов, работа морских и речных портов, магазинов, терминальных классов, радиолокационных комплексов, радиолокационных станций и т. д. и т. п. может быть описана в рамках ТСМО.

Системы массового обслуживания – это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, при этом поступившие заявки обслуживаются с помощью имеющихся в распоряжении системы каналов обслуживания.

С позиции моделирования процесса массового обслуживания ситуации, когда образуются очереди заявок (требований) на обслуживание, возникают следующим образом. Поступив в обслуживающую систему, требование присоединяется к очереди других (ранее поступивших) требований. Канал обслуживания выбирает требование из находящихся в очереди с тем, чтобы приступить к его обслуживанию. После завершения процедуры обслуживания очередного требования канал обслуживания приступает к обслуживанию следующего требования, если таковое имеется в блоке ожидания.

Цикл функционирования системы массового обслуживания подобного рода повторяется многократно в течение всего периода работы обслуживающей системы. При этом предполагается, что переход системы на обслуживание очередного требования после завершения обслуживания предыдущего требования происходит мгновенно, в случайные моменты времени.

Примерами систем массового обслуживания могут служить посты технического обслуживания автомобилей; любое предприятие сферы сервиса; персональные компьютеры, обслуживающие поступающие заявки или требования на решение тех или иных задач; аудиторские фирмы; отделы налоговых инспекций, занимающиеся приёмкой и проверкой текущей отчётности предприятий; телефонные станции и т. д.

Реальные системы, с которыми приходится иметь дело на практике, как правило, очень сложны и включают в себя ряд этапов (стадий) обслуживания. Причём на каждом этапе может существовать вероятность отказа в выполнении или существует ситуация приоритетного обслуживания по отношению к другим требованиям. При этом отдельные звенья обслуживания могут прекратить свою работу (для ремонта, наладки и т. д.) или могут быть подключены дополнительные средства. Могут быть такие обстоятельства, когда требования, получившие отказ, вновь возвращаются в систему (подобное может происходить в информационных системах).

Основными компонентами системы массового обслуживания любого вида являются:

Входной поток поступающих требований или заявок на обслуживание;

Дисциплина очереди;

Механизм обслуживания.

Входной поток требований . Для описания входного потока требуется задать вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание и указать количество таких требований в каждом очередном поступлении. При этом, как правило, оперируют понятием «вероятностное распределение моментов поступления требований». Здесь могут поступать как единичные, так и групповые требования (требования поступают группами в систему). В последнем случае обычно речь идёт о системе обслуживания с параллельно-групповым обслуживанием.

Дисциплина очереди – это важный компонент системы массового обслуживания, он определяет принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания. Чаще всего используются дисциплины очереди, определяемые следующими правилами:

– первым пришёл – первый обслуживаешься (FIFO);

– пришёл последним – обслуживаешься первым (LIFO);

– случайный отбор заявок (RANDOM);

– отбор заявок по критерию приоритетности (PR);

– ограничение времени ожидания момента наступления обслуживания (имеет место очередь с ограниченным временем ожидания обслуживания или количеством мест, что ассоциируется с понятием «допустимая длина очереди»).

Следует отметить, что время обслуживания заявки зависит от характера самой заявки или требований клиента, и от состояния и возможностей обслуживающей системы. В ряде случаев приходится также учитывать вероятность выхода обслуживающего прибора по истечении некоторого ограниченного интервала времени.

Структура обслуживающей системы определяется количеством и взаимным расположением каналов обслуживания (механизмов, приборов и т. п.). Cистема обслуживания может иметь не один канал обслуживания, а несколько – система такого рода способна обслуживать одновременно несколько требований. В этом случае, если все каналы обслуживания предлагают одни и те же услуги, можно утверждать, что имеет место параллельное обслуживание – многоканальная система.

Система обслуживания может состоять из нескольких разнотипных каналов обслуживания, через которые должно пройти каждое обслуживаемое требование, т. е. в обслуживающей системе процедуры обслуживания требований реализуются последовательно.

Рассмотрев основные компоненты систем обслуживания, можно утверждать, что функциональные возможности любой систе­мы массового обслуживания определяются следующими основными факторами:

Вероятностное распределение моментов поступлений заявок на обслуживание (единичных или групповых);

Вероятностное распределение времени продолжительности обслуживания;

Конфигурация обслуживающей системы (параллельное, последовательное или параллельно-последовательное обслуживание);

Количество и производительность обслуживающих каналов;

Дисциплина очереди;

Мощность источника требований.

В системах с ограниченным ожиданием может ограничиваться длина очереди, время пребывания в очереди.

В системах с неограниченным ожиданием заявка, стоявшая в очереди, ждёт обслуживание неограниченно долго, т. е. пока не подойдёт очередь.

Приведённая классификация СМО является условной. На практике чаще всего системы массового обслуживания выступают в качестве смешанных систем. Например, заявки ожидают начала обслуживания до определённого момента, после чего система начинает работать как система с отказами.

Предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности системы массового обслуживания, и эффективностью её функционирования. В большинстве случаев все параметры, описывающие системы массового обслуживания, являются случайными величинами или функциями, поэтому эти системы относятся к стохастическим системам.

В качестве основных критериев эффективности функционирования систем массового обслуживания в зависимости от характера решаемой задачи могут выступать:

Вероятность немедленного обслуживания поступившей заявки;

Вероятность отказа в обслуживании поступившей заявки;

Относительная и абсолютная пропускная способность системы;

Средний процент заявок, получивших отказ в обслуживании;

Среднее время ожидания в очереди;

Средняя длина очереди;

Средний доход от функционирования системы в единицу времени.

Случайный характер потока заявок и длительности обслуживания приводит к тому, что в системе массового обслуживания происходит случайный процесс. По характеру случайного процесса, происходящего в системе массового обслуживания (СМО), различают марковские и немарковские. Независимо от характера процесса, протекающего в системе массового обслуживания, различают два основных вида СМО:

· системы с отказами, в которых заявка, поступившая в систему в момент, когда все каналы заняты, получает отказ и покидает очередь;

· системы с ожиданием (очередью), в которых заявка, поступившая в момент, когда все каналы обслуживания заняты, становится в очередь и ждет, пока не освободится один из каналов.

Для указания типа СМО используются общепринятые обозначения Кендалла – Баша: X/Y/Z/m ,

где X – вид закона распределения интервалов поступления заявок;
Y – вид закона распределения времени обслуживания заявок;
Z – число каналов;

m – число мест в очереди.

В обозначениях вида закона распределения буква M соответствует экспоненциальному распределению (от слова Марковиан ), буква E – распределению Эрланга, R – равномерному распределению и D – детерминированной величине.

Например, запись M/M/1 означаетодноканальную систему с экспоненциальными распределениями времени поступления и обслуживания заявок (М – марковская) без очереди.

2.7. Расчёт основных характеристик СМО

на основе использования их аналитических моделей

Рассмотрим такие СМО, в которых возможные состояния системы образуют цепь и каждое состояние, кроме исходного и последнего, связано прямой и обратной связью с двумя соседними состояниями. Такая схема процесса, протекающего в системе, называется схемой «гибели и размножения». Термин ведёт начало от биологических задач, процесс описывает изменение численности популяции.

Если в такой системе все потоки, переводящие систему из состояния в состояние пуассоновские, то процесс называется марковским случайным процессом «гибели и размножения».

Заметим, что в таких системах все состояния являются существенными, а значит, существуют финальные вероятности состояний, которые можно найти из линейной системы уравнений Эрланга.

На практике значительная часть систем (СМО) может описываться в рамках процесса «гибели и размножения».

Рассмотрим некоторые типы таких систем:

а) одноканальные с отказами (без очереди);

б) одноканальные с ограниченной очередью;

в) многоканальные с отказами (без очереди);

г) многоканальные с ограниченной очередью.

Среди потоков событий особое место занимает так называемый «пуассоновский поток», обладающий по сравнению с другими, рядом свойств, существенно облегчающих решение задач.

Пуассоновским потоком событий называется поток, обладающий двумя свойствами – ординарностью и отсутствием последствий.

Поток называется потоком без последействия , если для любых двух не перекрывающих участков t 1 и t 2 число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой.

Обозначили случайное число событий, наступивших на интервале времени t 1 ,через х 1 и на интервале t 2 , через х 12 . Для потока без последействия случайные величины х 1 и х 2 независимы, т.е. вероятность того, что на участке t 2 наступило определенное число событий m 2 не зависит от того, сколько событий m 1 наступило на участке t 1 .

P (x 2 =m 2 ½x 1 =m 1) = P (x 2 =m ).

(m 1 =0, 1, 2,…)

(m 2 =0, 1, 2,…). (2.47)

Из теории вероятностей известно, что для пуассоновского потока число событий х 1 , попадающих на любой интервал длины t, примыкающих к точке t, распределено по закону Пуассона (рис. 2.5.):

где (а× (t)) m – среднее число событий, наступающих на интервале времени t, примыкающем к моменту времени t . Поэтому поток и называется «пуассоновским».


Среднее число событий для ординарного потока равно интенсивности потока l(t ). Следовательно, среднее число событий наступающих на интервале времени t, примыкающем к моменту времени t будет равно:

Если пуассоновский поток событий является стационарным , то величина а не будет зависеть от t:

В этом случае вероятность того, что на произвольно выбранном участке времени продолжительностью t наступит m событий, определяется по формуле:

Стационарный поток часто называется простейшим потоком, поскольку применение простейших потоков при анализе различных систем массового обслуживания приводит к наиболее простым решениям. Найдем закон распределения интервала времени между двумя событиями в простейшем потоке (рис 2.6.):

Вероятность того, что на участке t , следующем за одним событием не появится не одного события будет:

Но эта вероятность равна вероятности того, что случайные величины Т будут больше величины t . Следовательно,

F (t )=P (T <1)=1 - p ×(T >t )=1 - e - l t , t >0. (2.54)

где F (t ) –функция распределения случайной величины Т .

Дифференцируя это выражение, получим плотность распределения случайной величины Т :



f(t )=le - l t , (t >0). (2.55)

Таким образом, в простейшем потоке интервалы между двумя соседними событиями распределен по доказательному закону с параметром l.

Вследствие отсутствия последействия все интервалы между соседними событиями представляют собой независимые случайные величины. Поэтому простейший поток представляет собой стационарный поток Пальма .

Математическое ожидание и дисперсия случайной величины Т -интервала времени между двумя событиями в простейшем потоке, равны:

Таким образом,

Регулярный поток событий:

где Т* участок, на который упадает случайное событие.

Регулярный поток представляет собой последовательность событий, разделенных строго одинаковыми интервалами.

Плотность распределения интервала между любыми событиями, может быть представлена в виде:

f (t )=d(t-m t ), (2.59)

где d(t ) – известная дельта-функция.

Так как интервал между соседними точками строго постоянен и равен m t , то очевидно математическое ожидание этого интервала равно m t , а D t = 0.

Найдем закон распределения времени Q от случайной точки до наступления очередного события:

Характеристическая функция интервала между соседними событиями в регулярном потоке будет иметь вид:

g (x )= e - imt x. (2.61)

Регулярный поток событий сравнительно редко используется при решении прикладных задач. Это объясняется тем, что такой поток событий обладает очень большим (неограниченным) последействием, так как, зная лишь один момент наступления событий в регулярном потоке, можно восстановить всё прошлое этого потока и предсказать будущее.

Основная задача ТСМО заключается в установлении зависимости между характером потока заявок на входе СМО, производительностью одного канала, числом каналов и эффективностью обслуживания.

В качестве критерия эффективности могут быть использованы различные функции и величины:

    • среднее время простоя системы;
    • среднее время ожидания в очереди;
    • закон распределения длительности ожидания требования в очереди;
    • средний % заявок, получивших отказ; и т.д.

Выбор критерия зависит от вида системы. Например, для систем с отказами главной характеристикой является абсолютная пропускная способность СМО; менее важные критерии - число занятых каналов, среднее относительное время простоя одного канала и системы в целом. Для систем без потерь (с неограниченным ожиданием) важнейшим является среднее время простоя в очереди, среднее число требований в очереди, среднее время пребывания требований в системе, коэффициент простоя и коэффициент загрузки обслуживающей системы.

Современная ТСМО является совокупностью аналитических методов исследования перечисленных разновидностей СМО. В дальнейшем из всех достаточно сложных и интересных методов решения задач массового обслуживания будут изложены методы, описываемые в классе марковских процессов типа “гибель и размножение”. Это объясняется тем, что именно эти методы чаще всего используются в практике инженерных расчетов.

2. Математические модели потоков событий.

2.1. Регулярный и случайный потоки.

Одним из центральных вопросов организации СМО является выяснение закономерностей, которым подчиняются моменты поступления в систему требований на обслуживание. Рассмотрим наиболее употребляемые математические модели входных потоков.

Определение: Поток требований называют однородным, если он удовлетворяет условиям:

  1. все заявки потока с точки зрения обслуживания являются равноправными;

вместо требований (событий) потока, которые по своей природе могут быть различными, рассматриваются толь ко моменты их поступления.

Определение: Регулярным называются поток, если события в потоке следуют один за другим через строгие интервалы времени.

Функция f (х) плотности распределения вероятности случайной величины Т – интервала времени между событиями имеет при этом вид:

Где - дельта функция, М т - математическое ожидание, причем М т =Т, дисперсия D т =0 и интенсивность наступления событий в поток =1/M т =1/T.

Определение: Поток называют случайным , если его события происходят в случайные моменты времени.

Случайный поток может быть описан как случайный вектор, который, как известно, может быть задан однозначно законом распределения двумя способами:

Где, zi - значения Ti(i=1,n), В этом случае моменты наступления событий могут быть вычислены следующим образом

t 1 =t 0 +z1

t 2 =t 1 +z2

………,

где, t 0 - момент начала потока.

2.2. Простейший пуассоновский поток.

Для решения большого числа прикладных задач бывает достаточным применить математические модели однородных потоков, удовлетворяющих требованиям стационарности, без последействия и ординарности.

Определение: Поток называется стационарным, если вероятность появления n событий на интервале времени (t,t+T) зависит от его расположения на временной оси t.

Определение: Поток событий называется ординарным, если вероятность появления двух или более событий в течении элементарного интервала времени D t есть величина бесконечно малая по сравнению с вероятностью появления одного события на этом интервале, т.е. при n=2,3,…

Определение: Поток событий называетсяпотоком без последствия , если для любых непересекающихся интервалов времени число событий, попадающих на один из них, не зависит от числа событий попадающих на другой.

Определение: Если поток удовлетворяет требованиям стационарности, ординарности и без последствия он называется простейшим, пуассоновским потоком.

Доказано, что для простейшего потока число n событий попадающих на любой интервал z распределено по закону Пуассона:

(1)

Вероятность того, что на интервале времени z не появится ни одного события равна:

(2)

тогда вероятность противоположного события:

где по определению P(T это функция распределения вероятности Т. Отсюда получим, что случайная величина Т распределена по показательному закону:

(3)

параметр называют плотностью потока. Причем,

Впервые описание модели простейшего потока появились в работах выдающихся физиков начала века – А. Эйнштейна и Ю.Смолуховского, посвященных броуновскому движению.

2.3. Свойства простейшего пуассоновского потока.

Известны два свойства простейшего потока, которые могут быть использованы при решении практических задач.

2.3.1. Введем величину a= х. В соответствии со свойствами Пуассоновского распределения при оно стремится к нормальному. Поэтому для больших а для вычисления Р{Х(а)меньше, либо равно n}, где Х(а) – случайная величина распределенная по Пуассону с матожиданием а можно воспользоваться следующим приближенным равенством:

2.3.2. Еще одно свойство простейшего потока связано со следующей теоремой:

Теорема: При показательном распределении интервала времени между требованиями Т, независимо от того, сколько он длился, оставшаяся его часть имеет тот же закон распределения.

Доказательство: пусть Т распределено по показательному закону: Предположим, что промежуток а уже длился некоторое время а< Т. Найдем условный закон распределения оставшейся части промежутка Т 1 =Т-а

F a (x)=P(T-ax)

По теореме умножения вероятностей:

P((T>a)(T-az) P(T-aa)=P(T>a) F a (z).

Отсюда,

равносильно событию а, для которого P(а; с другой стороны

P(T>a)=1-F(a), таким образом

F a (x)=(F(z+a)-F(a))/(1-F(a))

Отсюда, учитывая (3):

Этим свойством обладает только один вид потоков – простейшие пуассоновские.

В предыдущих лекциях мы научились имитировать наступление случайных событий. То есть мы можем разыграть — какое из возможных событий наступит и в каком количестве. Чтобы это определить, надо знать статистические характеристики появления событий, например, такой величиной может быть вероятность появления события, или распределение вероятностей разных событий, если типов этих событий бесконечно много.

Но часто еще важно знать, когда конкретно наступит то или иное событие во времени.

Когда событий много и они следуют друг за другом, то они образуют поток . Заметим, что события при этом должны быть однородными, то есть похожими чем-то друг на друга. Например, появление водителей на АЗС, желающих заправить свой автомобиль. То есть, однородные события образуют некий ряд. При этом считается, что статистическая характеристика этого явления (интенсивность потока событий) задана. Интенсивность потока событий указывает, сколько в среднем происходит таких событий за единицу времени. Но когда именно произойдет каждое конкретное событие надо определить методами моделирования. Важно, что, когда мы сгенерируем, например, за 200 часов 1000 событий, их количество будет равно примерно величине средней интенсивности появления событий 1000/200 = 5 событий в час, что является статистической величиной, характеризующей этот поток в целом.

Интенсивность потока в некотором смысле является математическим ожиданием количества событий в единицу времени. Но реально может так оказаться, что в один час появится 4 события, в другой — 6, хотя в среднем получается 5 событий в час, поэтому одной величины для характеристики потока недостаточно. Второй величиной, характеризующей насколько велик разброс событий относительно математического ожидания, является, как и ранее, дисперсия. Собственно именно эта величина определяет случайность появления события, слабую предсказуемость момента его появления. Про эту величину мы расскажем в следующей лекции.

Поток событий — это последовательность однородных событий, наступающих одно за другим в случайные промежутки времени. На оси времени эти события выглядят как показано на рис. 28.1 .


Примером потока событий могут служить последовательность моментов касания взлетной полосы самолетами, прилетающими в аэропорт.

Интенсивность потока λ — это среднее число событий в единицу времени. Интенсивность потока можно рассчитать экспериментально по формуле: λ = N /T н , где N — число событий, произошедших за время наблюдения T н .

Если интервал между событиями τ j равен константе или определен какой-либо формулой в виде: t j = f (t j – 1) , то поток называется детерминированным . Иначе поток называется случайным .

Случайные потоки бывают:

  • ординарные : вероятность одновременного появления двух и более событий равна нулю;
  • стационарные : частота появления событий λ (t ) = const(t ) ;
  • без последействия : вероятность появления случайного события не зависит от момента совершения предыдущих событий.

Пуассоновский поток

За эталон потока в моделировании принято брать пуассоновский поток .

Пуассоновский поток — это ординарный поток без последействия.

Как ранее было указано, вероятность того, что за интервал времени (t 0 , t 0 + τ ) произойдет m событий, определяется из закона Пуассона:

где a — параметр Пуассона.

Если λ (t ) = const(t ) , то это стационарный поток Пуассона (простейший). В этом случае a = λ · t . Если λ = var(t ) , то это нестационарный поток Пуассона .

Для простейшего потока вероятность появления m событий за время τ равна:

Вероятность непоявления (то есть ни одного, m = 0 ) события за время τ равна:

Рис. 28.2 иллюстрирует зависимость P 0 от времени. Очевидно, что чем больше время наблюдения, тем вероятность непоявления ни одного события меньше. Кроме того, чем более значение λ , тем круче идет график, то есть быстрее убывает вероятность. Это соответствует тому, что если интенсивность появления событий велика, то вероятность непоявления события быстро уменьшается со временем наблюдения.

Вероятность появления хотя бы одного события (P ХБ1С ) вычисляется так:

так как P ХБ1С + P 0 = 1 (либо появится хотя бы одно событие, либо не появится ни одного, — другого не дано).

Из графика на рис. 28.3 видно, что вероятность появления хотя бы одного события стремится со временем к единице, то есть при соответствующем длительном наблюдении события таковое обязательно рано или поздно произойдет. Чем дольше мы наблюдаем за событием (чем более t ), тем больше вероятность того, что событие произойдет — график функции монотонно возрастает.

Чем больше интенсивность появления события (чем больше λ ), тем быстрее наступает это событие, и тем быстрее функция стремится к единице. На графике параметр λ представлен крутизной линии (наклон касательной).

Если увеличивать λ , то при наблюдении за событием в течение одного и того же времени τ , вероятность наступления события возрастает (см. рис. 28.4 ). Очевидно, что график исходит из 0, так как если время наблюдения бесконечно мало, то вероятность того, что событие произойдет за это время, ничтожна. И наоборот, если время наблюдения бесконечно велико, то событие обязательно произойдет хотя бы один раз, значит, график стремится к значению вероятности равной 1.

Изучая закон, можно определить, что: m x = 1/λ , σ = 1/λ , то есть для простейшего потока m x = σ . Равенство математического ожидания среднеквадратичному отклонению означает, что данный поток — поток без последействия. Дисперсия (точнее, среднеквадратичное отклонение) такого потока велика. Физически это означает, что время появления события (расстояние между событиями) плохо предсказуемо, случайно, находится в интервале m x – σ < τ j < m x + σ . Хотя ясно, что в среднем оно примерно равно: τ j = m x = T н /N . Событие может появиться в любой момент времени, но в пределах разброса этого момента τ j относительно m x на [–σ ; +σ ] (величину последействия). На рис. 28.5 показаны возможные положения события 2 относительно оси времени при заданном σ . В данном случае говорят, что первое событие не влияет на второе, второе на третье и так далее, то есть последействие отсутствует.

По смыслу P равно r (см. лекцию 23. Моделирование случайного события. Моделирование полной группы несовместных событий), поэтому, выражая τ из формулы (*) , окончательно для определения интервалов между двумя случайными событиями имеем:

τ = –1/λ · Ln(r ) ,

где r — равномерно распределенное от 0 до 1 случайное число, которое берут из ГСЧ, τ — интервал между случайными событиями (случайная величина τ j ).

Пример 1 . Рассмотрим поток изделий, приходящих на технологическую операцию. Изделия приходят случайным образом — в среднем восемь штук за сутки (интенсивность потока λ = 8/24 [ед/час] ). Необходимо промоделировать этот процесс в течение T н = 100 часов . m = 1/λ = 24/8 = 3 , то есть в среднем одна деталь за три часа. Заметим, что σ = 3 . На рис. 28.6 представлен алгоритм, генерирующий поток случайных событий.

На рис. 28.7 показан результат работы алгоритма — моменты времени, когда детали приходили на операцию. Как видно, всего за период T н = 100 производственный узел обработал N = 33 изделия. Если запустить алгоритм снова, то N может оказаться равным, например, 34, 35 или 32. Но в среднем, за K прогонов алгоритма N будет равно 33.33… Если посчитать расстояния между событиями t сi и моментами времени, определяемыми как 3 · i , то в среднем величина будет равна σ = 3 .

Моделирование неординарных потоков событий

Если известно, что поток не является ординарным, то необходимо моделировать кроме момента возникновения события еще и число событий, которое могло появиться в этот момент. Например, вагоны на железнодорожную станцию прибывают в составе поезда в случайные моменты времени (ординарный поток поездов). Но при этом в составе поезда может быть разное (случайное) количество вагонов. В этом случае о потоке вагонов говорят как о потоке неординарных событий.

Допустим, что M k = 10 , σ = 4 (то есть, в среднем в 68 случаях из 100 приходит от 6 до 14 вагонов в составе поезда) и их число распределено по нормальному закону. В место, отмеченное (*) в предыдущем алгоритме (см. рис. 28.6 ), нужно вставить фрагмент, показанный на рис. 28.8 .

Пример 2 . Очень полезным в производстве является решение следующей задачи. Каково среднее время суточного простоя оборудования технологического узла, если узел обрабатывает каждое изделие случайное время, заданное интенсивностью потока случайных событий λ 2 ? При этом экспериментально установлено, что привозят изделия на обработку тоже в случайные моменты времени, заданные потоком λ 1 партиями по 8 штук, причем размер партии колеблется случайно по нормальному закону с m = 8 , σ = 2 (см. лекцию 25). До начала моделирования T = 0 на складе изделий не было. Необходимо промоделировать этот процесс в течение T н = 100 часов.

На рис. 28.9 представлен алгоритм, генерирующий случайным образом поток прихода партий изделий на обработку и поток случайных событий — выхода партий изделий с обработки.

На рис. 28.10 показан результат работы алгоритма — моменты времени, когда детали приходили на операцию, и моменты времени, когда детали покидали операцию. На третьей линии видно, сколько деталей стояло в очереди на обработку (лежало на складе узла) в разные моменты времени.

Отмечая для обрабатывающего узла времена, когда он простаивал в ожидании очередной детали (см. на рис. 28.10 участки времени, выделенные красной штриховкой), мы можем посчитать суммарное время простоев узла за все время наблюдения, а затем рассчитать среднее время простоя в течение суток. Для данной реализации это время вычисляется так:

T пр. ср. = 24 · (t 1 пр. + t 2 пр. + t 3 пр. + t 4 пр. + … + t N пр.)/T н .

Задание 1 . Меняя величину σ , установите зависимость T пр. ср. (σ ) . Задавая стоимость за простой узла 100 евро/час, установите годовые потери предприятия от нерегулярности в работе поставщиков. Предложите формулировку пункта договора предприятия с поставщиками «Величина штрафа за задержку поставки изделий».

Задание 2 . Меняя величину начального заполнения склада, установите, как изменятся годовые потери предприятия от нерегулярности в работе поставщиков в зависимости от принятой на предприятии величины запасов.

Моделирование нестационарных потоков событий

В ряде случаев интенсивность потока может меняться со временем λ (t ) . Такой поток называется нестационарным . Например, среднее количество за час машин скорой помощи, покидающих станцию по вызовам населения большого города, в течение суток может быть различным. Известно, например, что наибольшее количество вызовов падает на интервалы с 23 до 01 часа ночи и с 05 до 07 утра, тогда как в остальные часы оно вдвое меньше (см. рис. 28.11 ).

В этом случае распределение λ (t ) может быть задано либо графиком, либо формулой, либо таблицей. А в алгоритме, показанном на рис. 28.6 , в место, помеченное (**), нужно будет вставить фрагмент, показанный на рис. 28.12 .

Информатика, кибернетика и программирование

Определение Пуассоновского потока. Пуассоновский поток это ординарный поток без последействия. Классической моделью трафика в информационных сетях является Пуассоновский простейший поток. Он характеризуется набором вероятностей Pk поступления k сообщений за временной интервал t: где k=01 число сообщений; λ интенсивность потока.

1. Определение Пуассоновского потока. Свойства.

Пуассоновский поток - это ординарный поток без последействия.

Классической моделью трафика в информационных сетях является Пуассоновский (простейший) поток. Он характеризуется набором вероятностей P(k) поступления k сообщений за временной интервал t:

где k=0,1,… - число сообщений; λ - интенсивность потока.

Заметим, что интервал времени измерения количества сообщений t и интенсивность потока λ являются постоянными величинами.

Семейство Пуассоновских распределений P(k) в зависимости от λ изображено на рис.1. Большее значение λ соответствует более широкому и симметричному графику плотности вероятности.

Рис. 1. Пуассоновские распределения. Плотности вероятностей.

Математическое ожидание (среднее) и дисперсия Пуассоновского потока равны λ t .

Зная вероятность поступления данных за период, можно получить распределение интервала τ между соседними событиями:

Отсюда вывод: пуассоновский поток характеризуется экспоненциальным распределением интервалов между событиями.

Основным свойством пуассоновского потока , обусловливающим его широкое применение при моделировании, является аддитивность: результирующий поток суммы пуассоновских потоков тоже является пуассоновским с суммарной интенсивностью:

При моделировании Пуассоновский поток можно получить мультиплексированием совокупности ON/OFF источников, которые называются Марковскими процессами (рис.2.).

Рис. 2. Получение Пуассоновского распределения

2. СМО с отказами (классическая система Эрланга)

Здесь мы рассмотрим одну из первых по времени, «классических» задач теории массового обслуживания; эта задача возникла из практических нужд телефонии и была решена в 1909 г. датским инженером-математиком А.К. Эрлангом. Задача ставится так: имеется n каналов (линий связи), на которые поступает поток заявок с интенсивностью λ. Поток обслуживаний каждого канала имеет интенсивность μ. Найти предельные вероятности состояний системы и показатели ее эффективности.

Система S (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе): S 0 , S 1 ,…, S n , где S k – состояние системы, когда в ней находится k заявок, т.е. занято k каналов.

Граф состояний СМО соответствует процессу гибели и размножения (рис. 3).

Рис. 3. Граф состояний СМО

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью λ. Интенсивность же потока обслуживаний, переводящих систему из любого правого состояния в соседнее левое, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S 2 (два канала заняты), то она может перейти в состояние S 1 (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживаний будет 2μ . Аналогично суммарный поток обслуживаний, переводящий СМО из состояния S 3 (три канала заняты) в S 2 , будет иметь интенсивность 3μ , т.е. может освободиться любой из трех каналов, и т.д.

В формуле (1) для схемы гибели и размножения получим для предельной вероятности состояния:

(1)

где члены разложения - коэффициенты при p 0 в выражениях для предельных вероятностей p 1 , p 2 ,..., p n .

Заметим, что в формулу (1) интенсивности λ и μ входят не по отдельности, а только в виде отношения μ/λ. Обозначим: μ/λ = p , и будем называть величину ρ приведенной интенсивностью потока заявок или интенсивностью нагрузки канала. Она выражает среднее число заявок, приходящих за среднее время обслуживания одной заявки. Пользуясь этим обозначением, перепишем формулу (1) в виде:

(2)

При этом:

(3)

Формулы (2) и (3) для предельных вероятностей получили названия формул Эрланга в честь основателя теории массового обслуживания.

Вероятность отказа СМО есть предельная вероятность того, что все n каналов системы будут заняты, т.е.

Отсюда находим относительную пропускную способность – вероятность того, что заявка будет обслужена:

Абсолютную пропускную способность получим, умножая интенсивность потока заявок λ на Q:

(4)

Осталось только найти среднее число занятых каналов k. Эту величину можно было бы найти «впрямую», как математическое ожидание дискретной случайной величины с возможными значениями 0,1,..., n и вероятностями этих значений p 0 , p 1 , …, p n :

Подставляя сюда выражения (3) для p k и выполняя соответствующие преобразования, мы, в конце концов, получили бы формулу для k. Однако среднее число занятых каналов можно найти проще, если учесть, что абсолютная пропускная способность A системы есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем μ заявок (в единицу времени), то среднее число занятых каналов:

или, учитывая (4):


А также другие работы, которые могут Вас заинтересовать

58607. Табличные информационные модели 106.5 KB
Предмет усвоения: табличные информационные модели таблица типа объекты-свойства таблица типа объекты-объекты один таблица типа объекты объекты несколько таблица типа объекты свойства объекты. Средства усвоения: Логический анализ: Таблица типа ОС это таблица содержащая информацию...
58610. Семейное право 50.5 KB
Цель урока: дать характеристику основ семейного права РФ и продолжить формирование способностей учащихся к выбору действий и поступков в морально-правовой ситуации в соответствии с нормами семейного законодательства и морали. Задачи урока: формирование системы знаний семейного права...
58612. Менеджмент 33.5 KB
Ход урока. Мы с вами вместе вспомнили о менеджменте его функциях факторах внутренней и внешней среды менеджмента роли коммуникаций Самоанализ урока Анализ структуры. На данном занятии присутствовали все основные этапы прохождения урока.
58613. Темперамент и выбор профессии 60.5 KB
Задачи урока: Образовательная ознакомить учащихся с понятиями тип темперамента характер; Развивающая развить у учащихся интерес к выбору будущей профессии; Воспитательная содействовать воспитанию трудолюбия стремления к выбору будущей профессии...
58615. Урок по рендерингу анимации 3d Max. Экспорт анимации 3d Max в видео 230.5 KB
В разделе Render Output нажимаем кнопку Files и переходим в папку или создаём новую куда будем сохранять получившиеся кадры анимации. Нажимаем кнопку Sve для возврата в окно Render Setup Запускаем визуализацию нажатием на кнопку Render.


Случайные статьи

Вверх