Гиперзвуковая авиация. Гиперзвуковые ударные системы нового поколения. Основные проблемы гиперзвуковых решений

Хотя эпоха «Холодной» войны осталась в прошлом, на сегодняшний день в мире осталось достаточно проблем, решать которые приходится с помощью новейших разработок в области оружия. На первый взгляд главные мировые проблемы исходят от террористических группировок, отношения некоторых крупных мировых держав тоже достаточно напряжённые.

В последнее время крайне обострились отношения между Россией и США. Используя НАТО, США окружает Россию системами ПРО. Обеспокоенная этим Россия приступила к разработкам гиперзвуковых летательных аппаратов, так называемых «беспилотников», которые могут нести ядерные боеголовки. Именно с этими проектами связан секретный сверхзвуковой глайдер «Ю-71, испытания которого проходят в обстановке строжайшей секретности.

История развития гиперзвукового оружия

Первые испытания самолётов, способных летать со скоростью, превышающей скорость звука, начались ещё в 50-х годах 20 века. Это было связано с эпохой Холодной» войны, когда две сильнейшие сверхдержавы мира (США и СССР) пытались обойти друг друга в гонке вооружений. Первой советской разработкой в этой области стала система «Спираль». Она представляла собой небольшой орбитальный самолёт, и должна была соответствовать следующим параметрам:

  • Система должна была превосходить американскую X-20 «Dyna Soar», которая представляла собой подобный проект;
  • Гиперзвуковой самолёт-носитель должен был обеспечить скорость порядка 7 000 км/ч;
  • Система должна была отличаться надёжностью и не развалиться при перегрузках.

Несмотря на все старания советских конструкторов, характеристики гиперзвукового самолёта-носителя даже не приблизились к заветной скоростной цифре. Проект пришлось закрыть, так как система даже не взлетела. К огромной радости советского правительства, американские испытания тоже с треском провалились. В то время мировая авиация была ещё бесконечно далека от скоростей, превышающих в несколько раз скорость звука.

Испытания, которые уже были более приближены к технологиям, связанным с гиперзвуком, проходили в 1991 году, тогда ещё в СССР. Тогда был осуществлён полёт «Холода», который являлся летающей лабораторией, созданной на базе ракетного комплекса с-200, на основе ракеты 5В28. Первое испытание прошло достаточно успешно, так как удалось развить скорость около 1 900 км/ч. Разработки в этой области продолжались до 1998 года, после чего были свёрнуты в связи с экономическим кризисом.

Развитие сверхзвуковых технологий в 21 веке

Хотя точной информации о разработке гиперзвукового вооружения за период с 2000 по 2010 годы нет, собрав материалы из открытых источников, можно увидеть, что данные разработки велись в нескольких направлениях:

  • В первую очередь разрабатываются боевые блоки для баллистических межконтинентальных ракеты. Хотя их масса намного превышает обычные ракеты такого класса, за счёт осуществления маневров в атмосфере их невозможно будет перехватить стандартными средствами ПРО;
  • Следующим направлением развития сверхзвуковых технологий является разработка комплекса «Циркон». Данный комплекс базируется на сверхзвуковой ПРК «Яхонт/Оникс»;
  • Разрабатывается также ракетный комплекс, ракеты которого смогут развивать скорость, которая превышает скорость звука в 13 раз.

Если все эти проекты объединятся в одном холдинге, то ракета, которая будет создана совместными усилиями, сможет быть как наземного, так и воздушного или корабельного базирования. Если американский проект «Prompt Global Strike», который предусматривает создание сверхзвукового оружия, способного поразить любую точку мира в течении одного часа, увенчается успехом, Россию смогут защитить только межконтинентальные сверхзвуковые ракеты собственной разработки.

Российские сверхзвуковые ракеты, испытания которых фиксируют британские и американские специалисты, способны развивать скорость около 11 200 км/ч. Их практически невозможно сбить и даже крайне сложно отследить. Информации о данном проекте, который часто фигурирует под названием Ю-71 или «объект 4202», крайне мало.

Самые известные факты о секретном оружии России Ю-71

Секретный глайдер Ю-71, который является частью российской ракетной сверхзвуковой программы, способен долететь до Нью-Йорка за 40 минут. Хотя данная информация официально не подтверждена, исходя из того, что сверхзвуковые российские ракеты способны развивать скорость свыше 11 00 км/ч, можно сделать именно такие выводы.

По немногочисленной информации, которую можно про него отыскать, глайдер Ю-71 способен:

  • Лететь со скоростью свыше 11 000 км/ч;
  • Обладает невероятной маневренностью;
  • Способен планировать;
  • При осуществлении полёта может выходить в космос.

Хотя испытания ещё не закончены, всё говорит о том, что к 2025 году на вооружении России может быть данный сверхзвуковой глайдер, вооружённый ядерными боеголовками. Такое оружие будет способно в течение часа оказаться практически в любой точке мира и нанести точечный ядерный удар.

Дмитрий Рогозин заявил, что оборонная промышленность России, которая во времена СССР была самой развитой и передовой, сильно отстала в гонке вооружений за 90-е и 2000-е годы. За последнее десятилетие российская армия начинает возрождаться. Советская техника заменяется современными высокотехнологичными моделями, а оружие пятого поколения, которое с 90-х годов «застряло» в конструкторских бюро в виде проектов на бумаге, начинает обретать вполне конкретные очертания. По словам Рогозина, новое российское оружие может удивить мир своей непредсказуемостью. Под непредсказуемым оружием, скорее всего, имелся ввиду глайдер Ю-71, вооружённый ядерными боеголовками.

Хотя данный аппарат разрабатывается как минимум с 2010 года, информация о его испытаниях попала к американским военным лишь в 2015 году. Пентагон от этого впал в полное уныние, ведь в случае применения Ю-71 вся система ПРО, которая установлена по периметру территории России, становится абсолютно бесполезной. Кроме этого, сами Соединённые Штаты Америки становятся беззащитными перед этим секретным ядерным глайдером.

Ю-71 в состоянии не только наносить ядерные удары по противнику. Благодаря наличию мощной ультрасовременной системы радиоэлектронной борьбы, глайдер способен за несколько минут, пролетая на территорией США, вывести из строя все станции обнаружения, оснащённые радиоэлектронной аппаратурой.

Если верить донесениям НАТО, то с 2020 по 2025 годы в армии России может появиться до 24 аппаратов типа Ю-71, любой из которых способен незамеченным пересечь вражескую границу и уничтожить целый город несколькими выстрелами.

Российские планы по развитию гипероружия

Хотя в России по вопросу принятия на вооружение Ю-71 никаких официальных заявлений не делается, известно, что разработка начата как минимум в 2009 году. Ещё в 2004 году было озвучено заявление, что космический аппарат, который способен развивать гиперзвуковую скорость, успешно прошёл испытания. Также известно, что испытуемый аппарат способен не только лететь по заданному курсу, но и совершать различные манёвры в полёте.

Ключевой особенностью нового оружия станет именно эта возможность совершения манёвров на сверхзвуковых скоростях. Доктор военных наук Константин Сивков утверждает, что современные межконтинентальные ракеты способны развивать сверхзвуковую скорость, хотя при этом они действуют лишь как баллистические боеголовки. Траекторию полёта данных ракет несложно рассчитать и предотвратить. Главной опасностью для противника являются именно управляемые летательные аппараты, которые в состоянии менять направление движения и двигаются при этом по сложной и непредсказуемой траектории.

На заседании военно-промышленной комиссии, которая прошла в Туле 19 сентября 2012 года, Дмитрий Рогозин сделал заявление о том, что следует ожидать появления нового холдинга, который возьмёт на себя все аспекты разработки гиперзвуковых технологий. Также на этой конференции были названы предприятия, которые должны войти в состав нового холдинга:

  • «НПО машиностроения», которое сейчас непосредственно занимается разработками сверхзвуковых технологий. Для создания холдинга, «НПО машиностроения» должно выйти из состава Роскосмоса;
  • Следующей частью нового холдинга должна стать корпорация «Тактическое ракетное вооружение»;
  • В работе холдингу должен активно помогать и концерн «Алмаз-Антей», сфера деятельности которого в настоящее время лежит в области противоракетной и воздушно-космической сферы.

Хотя, по словам Рогозина, данное слияние уже давно необходимо, из-за некоторых юридических аспектов, оно пока не состоялось. Рогозин подчеркнул, что данный процесс – это именно слияние, а не поглощение одной компании другой. Именно этот процесс позволит значительно ускорить развитие гиперзвуковых технологий в военной области.

Директор Центра анализа мировой торговли оружием, военный эксперт и председатель Общественного совета при Минобороны РФ Игорь Коротченко поддерживает идеи по слиянию, озвученные Рогозиным. По его словам, новый холдинг сможет полностью сконцентрировать свои усилия на создании новых перспективных видов вооружения. Так как оба предприятия обладают огромными возможностями, вместе они смогут внести значительный вклад в развитие оборонного комплекса России.

Если к 2025 году на вооружении России будут состоять не только гиперзвуковые ракеты, с ядерными боеголовками, но и глайдеры Ю-71, это будет серьёзной заявкой на переговорах с США. В связи с тем, что Америка на всех переговорах подобного типа привыкла действовать с позиции силы, диктуя второй стороне лишь выгодные для себя условия, полноценные переговоры с ней можно вести, только обладая новым мощным вооружением. Заставить США прислушаться к словам оппонента можно, только серьёзно испугав Пентагон.

Президент России Владимир Путин, выступая на конференции «Армия-2015» отметил, что ядерные силы получат 40 новейших межконтинентальных ракет. Многие поняли, что имеются ввиду гиперзвуковые ракеты, которые в состоянии преодолеть все известные системы противоракетной обороны. Слова президента косвенно подтверждает Виктор Мураховский (член экспертного совета при председателе военно-промышленной комиссии), говоря о том, что российские межконтинентальные баллистические ракеты с каждым годом совершенствуются.

Россия ведёт разработки крылатых ракет, которые способны летать на гиперзвуковых скоростях. Данные ракеты способны достигать целей на сверхмалых высотах. Все современные комплексы ПРО, которые находятся на вооружении НАТО, не в состоянии поразить цели, летящие на таких низких высотах. Кроме этого, все современные комплексы противоракетной обороны способны перехватывать цели, которые летят со скоростью не более 800 метров в секунду, поэтому даже если не считать глайдер Ю71, сверхзвуковых российских межконтинентальных ракет хватит, чтобы сделать Натовские системы ПРО бесполезными.

По последним данным известно, что США и Китай также разрабатывают свой аналог Ю-71, только китайская разработка может составить реальную конкуренцию российской разработке. Американцам, к глубочайшей их скорби, пока в этой области серьёзных успехов добиться не удалось.

Китайский глайдер известен под названием Wu-14. Данный аппарат официально испытывался только в 2012 году, но в результате данных испытаний он смог развить скорость свыше 11 000 км/ч. Хотя про скоростные качества китайской разработки известно широкой публике, про вооружение, которым будет оснащён китайский глайдер, нигде нет ни слова.

Американский сверхзвуковой беспилотник Falcon HTV-2, который проходил испытания несколько лет назад, потерпел сокрушительное фиаско – просто потерял управление и разбился после 10 минут полёта.

Если сверхзвуковое оружие станет стандартным вооружением российских Космических Сил, то вся система ПРО станет практически бесполезной. Внедрение сверхзвуковых технологий произведёт настоящую революцию в военной сфере всего мира.

в Избранное в Избранном из Избранного 0

Как отмечалось ранее, начиная с 70-х годов в ОКБ велись работы по созданию самолетов, способных выполнять длительный полет на крейсерских гиперзвуковых скоростях,
К означенному периоду в авиационно-космической технике и технологиях были достигнуты значительные результаты, полеты на сверхзвуковых скоростях стали обыденным явлением для самолетов военного назначения, внедрялись в эксплуатацию первые сверхзвуковые пассажирские самолеты, осуществлялись пилотируемые и беспилотные полеты в космос. Появились уже и серийные самолеты, летавшие в атмосфере со скоростями, соответствующими М=3 (МиГ-25, SR-71). Космические спускаемые аппараты и воздушно-космические самолеты с большими числами М совершали полеты на очень больших высотах, кратковременно проходя плотные слои атмосферы с гиперзвуковыми скоростями.

Общая диалектика развития авиационной техники, а также желание военно-политического руководства стран по обе стороны «железного занавеса» получить в свои руки очередное абсолютное оружие, поставило перед авиационной промышленностью передовых авиационных держав задачу создания летательных аппаратов самолетного типа с большими гиперзвуковыми скоростями, соответствующим М=3-10, способными выполнять полет на высотах 30-35 км. Подобный летательный аппарат по своим техническим решениям (как по части силовой установки, так и по своей конструкции) должен был в значительной степени отличаться от современных самолетов и космических аппаратов. Существовавшие типы ВРД, эффективно использовавшие атмосферу при полетах на малых высотах, из-за ограничений по температуре были приемлемы только для летательных аппаратов со скоростями полета, соответствующим М=3. С другой стороны, ракетные двигатели, для которых таких ограничений не было, из-за необходимости нести на борту полный запас топлива (горючее + окислитель), являлись нерациональными для продолжительных полетов в атмосфере.

Наиболее рациональным для принятых режимов будущего гиперзвукового самолета являлся прямоточный воздушно-реактивный двигатель (ПВРД) в комбинации с разгонным двигателем (ТРД или ЖРД). С целью достижения высокой эффективности силовой установки в качестве горючего предлагалось использовать жидкий водород. Для полетов в диапазоне чисел М=3-5, наиболее приемлемой определялась комбинированная силовая установка, содержащая турбореактивный и прямоточный двигатель, работающие на углеводородном горючем или сжиженным природным газе (СПГ). Для полетов со скоростями, превышающих М=5-6, наиболее подходящим являлся ПВРД на жидком водороде с разгонными ТРД на керосине или на жидком водороде.

Коренных изменений, с учетом способности летательного аппарата длительно воспринимать в полете высокие и сверхвысокие температуры, требовала конструкция подобного летательного аппарата. Выбор конструкции должен был определяться следующими факторами: с одной стороны, интенсивностью аэродинамического нагрева и его продолжительностью, а с другой стороны, кратностью ее использования или ресурсом.

Накопленный опыт показывал, что для летательных аппаратов, подверженных интенсивному аэродинамическому нагреву продолжительное время перспективными представлялись следующие типы конструкций: «горячая», теплоизолированная и активно-охлаждаемая. «Горячая» конструкция непосредственно контактируете окружающей средой. Теплоизолированная конструкция защищена теплоизлучающим слоем или экраном. Конструкция с активным охлаждением предполагала использование системы циркуляции теплоносителя, отводящего тепло от обшивки. Основными проблемами, требовавшими решения, являлись ослабление температурных напряжений, уменьшение коробления и увеличение ресурса конструкции. Одним из направлений, позволявшим ослабить температурные напряжения, являлось использование теплозащитных панелей (гофрированных, трубчатых и т.п.). Теплоизолированные конструкции предлагалось выполнять как сочетание силовой конструкции и теплозащиты. Самолет с умеренными требованиями к ресурсу и с крейсерским числом полета М=6 мог иметь «горячую» конструкцию или экранированную конструкцию, или упрощенную пассивную систему охлаждения. Для самолетов с большим ресурсом активная система охлаждения представлялась необходимой. В системе должны были использоваться промежуточные теплоноситель (например этилен гликоль), циркулирующий в каналах обшивки, передающий тепло через теплообменник жидкому водороду, который после этого должен был служить охладителем компонентов двигателя и поступать в камеру сгорания. Требования к активной системе могли быть снижены применением теплозащитных экранов или теплоизоляции.

Необходимость использования жидкого водорода в качестве топлива гиперзвукового самолета требует разработки высокоэффективной конструкции баков и низкотемпературной теплоизоляции (НТИ). Несмотря на то, что начиная с 60-х гг. было исследовано как в США, так и в СССР много различных конструкций криогенных баков и НТИ ни одна из этих конструкций не удовлетворяет как техническим, так и экономическим требованиям для гиперзвукового самолета. Так, конструкции криогенных баков и НТИ, разработанные лля применения в ракетной технике, имеют ограниченный ресурс. Отсутствие необходимости их многократного использования не требовало подробных исследований срока службы НТИ при длительном влиянии термоциклирова-ния, вибрации, климатических условий, старения материалов с точки зрения деградации их теплофизичес-ких и физикомеханических характеристик во времени.

Исследования по вопросам создания самолета на криогенном топливе показали, что среди множества технических проблем, одной из наиболее существенных является тепловая защита криогенных топливных баков.

Имевшийся, на тот период, задел в области гиперзвуковой аэродинамики был более весомый, чем в области конструкций и силовых установок будущих гиперзвуковых самолетов. Многие результаты аналитических и экспериментальных исследований, проведенных по другим авиационным, ракетным и авиационно-космическим программам (в частности по МВКА) были во многом применимы к гиперзвуковым самолетам. Предстояло еще много сделать для определения оптимальной аэродинамической схемы, обеспечивающей полезное взаимодействие силовой установки и планера гиперзвукового самолета. Как и для обычных самолетов, необходимо было вести исследования по применению систем активного управления при уменьшении запасов статической устойчивости, что должно было снизить размеры и массу летательного аппарата.

В СССР работы по гиперзвуковым самолетам в ударных вариантах начались в середине 70-х годов. К работам над этой перспективной тематикой было подключено несколько авиационных ОКБ страны и научно-исследовательских организаций авиационной промышленности.

В Туполевском ОКБ работы шли в следующих направлениях:

  • - исследования и проектирование гиперзвукового дальнего ударного самолета, рассчитанного на крейсерскую скорость полета, соответствующую М=4 - проект «230» (Ту-230). Проектирование было начато в 1983 г. Эскизный проект был готов в 1985 г. Взлетная масса самолета определялась в пределах 180 т. Силовая установка должна была состоять из четырех комбинированных ТРД типа Д-80. Максимальный запас топлива (керосин) - 106 т. Высота крейсерского полета 25000 - 27000 м, максимальная дальность полета определялась в 8000 - 10000 км при продолжительности полета 2,3 часа, (длина самолета - 54,15 м, размах крыла - 26,83 м);
  • - исследования и проектирование гиперзвукового дальнего самолета, рассчитанного на крейсерскую скорость полета, соответствующую М=6 - проект «260» (Ту-260). Это был ЛА с двигателями, работающими на крейсерском режиме на жидком водороде с дальностью полета до 12000 км при 10 т полезной нагрузки;
  • - исследования и проектирование гиперзвукового межконтинентального самолета, рассчитанного на крейсерскую скорость полета, соответствующую М=6, при заданной максимальной дальности полета до 16000 км и с полезной нагрузкой до 20 т - проект «360» (Ту-360). Высота крейсерского полета 30000 - 33000 м.

По теме «260» и «360» в ОКБ было подготовлено несколько вариантов гиперзвукового самолета с силовой установкой с 4-6 маршевыми ПВРД и с шестью разгонными ТРДЦ тягой по 22000 кгс. Расчетный удельный расход топлива ПВРД на крейсерском режиме составлял 1,04 кг/кгсч. Выбранная компоновочно-аэродинамическая схема позволила получить расчетные значения качества 5,2 - 5,5. Для разгонных ТРДЦ предполагалось использовать керосин.

В рамках работ по гиперзвуковым самолетам в ОКБ было подготовлено предложение по проекту гиперзвукового пассажирского самолета, рассчитанного на крейсерский полет со скоростью, соответствующей М = 4,5-5 на высотах 28 - 32 км. Дальность полета определялась в 8500 - 10000 км. Число пассажиров - 250 - 280 человек. Силовая установка - комбинированная (ТРД + ПВРД), в качестве топлива должен был использоваться сжиженный природный газ.

В ходе исследований по гиперзвуковым самолетам в ОКБ были проведены обширные исследования материалов и конструкций, работающих в условиях интенсивного аэродинамического нагрева. Был сделан вывод, что одними из наиболее перспективных являются конструкции с металлическими внешними поверхностями. Разработка таких конструкций требовала решения ряда задач, основными среди которых являлись поиски новых конструкционных материалов с повышенным сопротивлением окислению и увеличенным пределом ползучести, а также разработка качественно новых типов многослойных металлических конструкций, эксплуатирующихся в условиях больших температурных градиентов. Основными типами таких конструкций, которые рассматривались в ОКБ для гиперзвуковых самолетов, были:

  • - металлические теплозащитные экраны для снижения тепловых потоков к основной силовой конструкции, не включенные в работу силовой конструкции и проектируемые на местную поперечную нагрузку;
  • - панели, обладающие как свойствами силовой конструкции, так и теплоизолирующими свойствами.

Одними из наиболее эффективных по несущей способности при работе в условиях нагрева до 250 - 500 °С являются многослойные конструкции из титановых сплавов.

В ходе этих исследований были разработаны технологии получения многослойных титановых панелей с ферменным заполнителем методом СПФ/ДС (сверхпластичная формовка и диффузионная сварка), в котором за одну операцию производилось и формирование из листового материала обшивок, заполнителя, элементов заготовок и соединения их между собой в готовую монолитную конструкцию.

Проводились исследования по низкотемпературной теплозащите (НТИ) топливных баков с криогенным топливом. Как наиболее перспективная рассматривалась теплозащита на основе экранно-вакуумной теплоизоляции (ЭВТИ) с мягкой герметичной оболочкой, обжатой атмосферным давлением для внешней НТИ, или давлением водорода для внутренней НТИ. Конструкция бака при этом может выполняться как из алюминиевых или титановых сплавов, так и из композиционных материалов. В ОКБ были изготовлены модельные баки, как с НТИ на основе пенопластов, так и с обжатой атмосферным давлением ЭВТИ. Были проведены ресурсные испытания этих баков с использованием жидкого азота.

Большое внимание уделялось проектированию криогенных топливных баков с большим ресурсом работы. При их разработке были созданы специальные нормы прочности, обеспечивающие необходимую герметичность в процессе эксплуатации.

Все эти и другие работы ОКБ имели большое значение для решения проблем создания гиперзвуковых летательных аппаратов, над которыми в те годы работало ОКБ, а также в работах по созданию криогенных самолетов, в частности, экспериментального Ту-155, проектов криогенных пассажирских самолетов Ту-204К, Ту-334К и др., над которыми ОКБ продолжает работать в настоящее время.

Сегодня ОКБ ОАО «Туполев» является обладателем уникальных технологий по криогенной авиационной технике, многие из которых были освоены в период работ по ВКС и гиперзвуковым самолетам.

Гиперзвуковые летательные аппараты, которые в ближайшем будущем достигнут технической зрелости, возможно, радикально изменят всю сферу ракетных вооружений. И в эту гонку России придется включаться, иначе возникнет риск потерять слишком много. Ведь речь идет ни много ни мало о научно-технической революции.

О гонке вооружений в данной сфере говорить пока рано — на сегодняшний день это гонка технологий. Гиперзвуковые проекты еще не вышли за рамки ОКР: пока в полет отправляются в основном демонстраторы. Их уровни технологической готовности по шкале DARPA находятся в основном на четвертой-шестой позиции (по десятибалльной шкале).

Впрочем, говорить о гиперзвуке как о некой технической новинке не приходится. Боевые блоки МБР входят в атмосферу на гиперзвуке, спускаемые аппараты с космонавтами, космические шаттлы — это тоже гиперзвук. Но полет на гиперзвуковых скоростях при схождении с орбиты — вынужденная необходимость, и длится он недолго. Мы же будем говорить о летательных аппаратах, для которых гиперзвук — штатный режим применения, и без него они не смогут проявить свое превосходство и показать свои возможности и мощь.

УДАР С ОРБИТЫ

Речь пойдет о гиперзвуковых маневрирующих управляемых объектах — маневрирующих боевых головках МБР, гиперзвуковых крылатых ракетах, гиперзвуковых БПЛА. Что, собственно, мы понимаем под гиперзвуковыми летательными аппаратами? Прежде всего имеются в виду следующие характеристики: скорость полета — 5-10 М и выше, охватываемый рабочий диапазон высот — 25-140 км. Одно из самых привлекательных качеств гиперзвуковых аппаратов — это невозможность надежного слежения средствами ПВО, поскольку объект летит в плазменном облаке, непрозрачном для радиолокаторов. Стоит отметить также высокие маневренные возможности и минимальное время реакции на поражение. Например, гиперзвуковому аппарату требуется всего час после схода с орбиты ожидания для поражения выбранной цели.

Проекты гиперзвуковых аппаратов не раз разрабатывались и продолжают разрабатываться в нашей стране. Можно вспомнить Ту-130 , самолет «Аякс» на двух видах топлива — водороде для больших скоростей полета и керосине для меньших.

Оставил свой след в истории инженерной мысли проект ОКБ им. Микояна «Спираль», в котором возвращаемый воздушно-космический гиперзвуковой самолет выводился на орбиту ИСЗ гиперзвуковым самолетом-разгонщиком, а после выполнения боевых задач на орбите возвращался в атмосферу, выполнял в ней маневры также на гиперзвуковых скоростях. Наработки по проекту «Спираль» были использованы в проектах БОР и космического челнока «Буран». Есть официально не подтвержденные сведения о созданном в США гиперзвуковом самолете «Аврора». Все о нем слышали, но никто его ни разу не видел.

«ЦИРКОН» ДЛЯ ФЛОТА

17 марта 2016 года стало известно, что Россия официально приступила к испытаниям гиперзвуковой противокорабельной крылатой ракеты (ПКР) «Циркон». Новейшим снарядом будут вооружены АПЛ пятого поколения («Хаски»), также ее получат надводные корабли и, конечно, флагман российского флота «Петр Великий». Скорость 5-6 М и дальность действия не менее 400 км (это расстояние ракета преодолеет за четыре минуты) существенно осложнят применение мер противодействия. Известно, что ракета будет использовать новое топливо Децилин-М, которое увеличивает дальность полета на 300 км. Разработчик ПКР «Циркон» — НПО Машиностроения, входящее в состав «Корпорации «Тактическое ракетное вооружение»». Появления серийной ракеты можно ожидать к 2020 году. При этом стоит учесть, что Россия имеет богатый опыт в создании высокоскоростных противокорабельных крылатых ракет, таких как серийная ПКР П-700 «Гранит» (2,5 М), серийная ПКР П-270 «Москит» (2,8 М), на смену которым и поступит новая ПКР «Циркон».

ХИТРОУМНАЯ БОЕГОЛОВКА

Первая информация о запуске изделия Ю-71 (так оно обозначено на Западе] на околоземную орбиту ракетой РС-18 «Стилет» и его возвращении в атмосферу появилась в феврале 2015 года. Запуск был произведен с позиционного района Домбровского соединения 13-й ракетной дивизией РВСН (Оренбургская область). Сообщается также, что к 2025 году дивизия получит 24 изделия Ю-71 для оснащения уже новых ракет «Сармат». Изделие Ю-71 в рамках проекта 4202 создавалось также НПО Машиностроения с 2009 года.

Изделие представляет собой сверхманевренную боеголовку ракеты, совершающую планирующий полет на скорости 11000 км/ч. Она может выходить в ближний космос и оттуда поражать цели, а также нести ядерный заряд и быть оснащенной системой РЭБ. В момент входа «нырком» в атмосферу скорость может составлять 5000 м/с (18000 км/ч) и по этой причине Ю-71 имеет защиту от перегрева и перегрузок, причем может легко менять направление полета и при этом не разрушается.

Изделие Ю-71, обладая высокой маневренностью на гиперзвуковой скорости по высоте и по курсу и летая не по баллистической траектории, становится недостижимым для любой системы ПВО. К тому же боеголовка является управляемой, благодаря чему имеет очень высокую точность поражения: это позволит использовать ее также в неядерном высокоточном варианте. Известно, что в течение 2011-2015 годов было произведено несколько запусков. На вооружение изделие Ю-71, как полагают, будет принято в 2025 году, и им будет оснащаться МБР «Сармат».

ПОДНЯТЬСЯ ВВЫСЬ

Из проектов прошлого можно отметить ракету Х-90, которая была разработана МКБ «Радуга». Проект ведет свое начало с 1971 года, он был закрыт в тяжелом для страны 1992 году, хотя проведенные испытания показали хорошие результаты. Ракета неоднократно демонстрировалась на авиакосмическом салоне МАКС. Несколько лет спустя проект реанимировали: ракета получила скорость 4-5 М и дальность действия 3500 км с запуском с носителя Ту-160. Демонстрационный полет состоялся в 2004 году. Предполагалось вооружить ракету двумя отделяемыми боеголовками, размещенными по бокам фюзеляжа, однако на вооружение снаряд так и не поступил.

Гиперзвуковая ракета РВВ-БД была разработана ОКБ «Вымпел» им И.И. Торопова. Она продолжает линию ракет К-37, К-37М, находящихся на вооружении МиГ-31 и МиГ-31БМ. Ракетой РВВ-БД будут также вооружаться гиперзвуковые перехватчики проекта ПАК ДП. По заявлению руководителя КТРВ Бориса Викторовича Обносова, сделанному на МАКСе 2015 года, ракета начала выпускаться серийно и первые ее партии сойдут с конвейера уже в 2016 году. Ракета весит 510 кг, имеет осколочно-фугасную боевую часть и будет в широком диапазоне высот поражать цели на дальностях 200 км. Двухрежимный РДТТ позволяет ей развивать гиперзвуковую скорость 6 М.

ГИПЕРЗВУК ПОДНЕБЕСНОЙ

Осенью 2015 года Пентагон сообщил, и это было подтверждено Пекином, что Китай успешно провел испытания гиперзвукового маневрирующего ЛА DF-ZF Ю-14 (WU-14), который был запущен с полигона Учжай. Ю-14 отделился от носителя «на краю атмосферы», а затем планировал на цель, расположенную в нескольких тысячах километров на западе Китая. За полетом DF-ZF следили американские разведывательные службы, и по их данным аппарат маневрировал со скоростью 5 М, хотя потенциально его скорость может достигать и 10 М. Китай заявил, что он решил проблему гиперзвукового ВРД для подобных аппаратов и создал новые легкие композитные материалы для защиты от кинетического нагрева. Представители КНР также сообщили, что Ю-14 способен прорвать систему ПВО США и нанести глобальный ядерный удар.

ПРОЕКТЫ АМЕРИКИ

В настоящее время «в работе» в США находятся различные гиперзвуковые летательные аппараты, которые проходят летные испытания с той или иной долей успеха. Начало работ по ним было положено еще в начале 2000-х, и на сегодня они находятся на разных уровнях технологической готовности. Недавно разработчик гиперзвукового аппарата Х-51А компания «Боинг» заявила, что Х-51А будет принят на вооружение уже в 2017 году.

Среди реализуемых проектов у США имеются: проект гиперзвуковой маневрирующей боеголовки AHW (Advanced Hypersonic Weapon], гиперзвуковой ЛА Falcon HTV-2 (Hyper-Sonic Technology Vehicle), запускаемый с помощью МБР, гиперзвуковой ЛА X-43 Hyper-X, прототип гиперзвуковой крылатой ракеты X-51A Waverider компании «Боинг», снабженный гиперзвуковым ПВРД с сверхзвуковым горением. Также известно, что в США ведутся работы по гиперзвуковому БЛА SR-72 компании Lockheed Martin, которая только в марте 2016 года заявила официально о своих работах по этому изделию.

Первое упоминание о беспилотнике SR-72 относится к 2013 году, когда Lockheed Martin сообщила, что на смену разведчику SR-71 будет разрабатывать гиперзвуковой БЛА 5R-72. Он полетит со скоростью 6400 км/ч на рабочих высотах 50-80 км вплоть до суборбитальных, будет иметь двухконтурную двигательную установку с общим воздухозаборником и сопловым аппаратом на основе ТРД для разгона со скорости 3 М и гиперзвукового ПВРД со сверхзвуковым горением для полета со скоростями более 3 М. 5R-72 будет выполнять разведывательные задачи, а также наносить удары высокоточным оружием «воздух-поверхность» в виде легких ракет без двигателя — он им и не потребуется, так как хорошая стартовая гиперзвуковая скорость уже имеется.

К проблемным вопросам SR-72 специалисты относят выбор материалов и конструкции обшивки, способных выдержать большие тепловые нагрузки от кинетического нагрева при температурах 2000°С и выше. Также потребуется решить проблему отделения оружия из внутренних отсеков при гиперзвуковой скорости полета 5-6 М и исключить случаи потери связи, которые неоднократно наблюдались при испытаниях объекта HTV-2. Корпорация Lockheed Martin заявила, что размерность SR-72 будет сопоставима с размерностью SR-71 — в частности, длина SR-72 составит 30 м. На вооружение, как предполагается, SR-72 поступит в 2030 году.

Уже давно закончилась, мир не стал безопаснее. Опасности нынешнего века исходят не только от террористических группировок, отношения между ведущими мировыми державами также оставляют желать лучшего. Россия шантажирует США «радиоактивным пеплом», а американцы окружают Россию системой ПРО, закладывают новые стратегические подлодки и проводят испытания противоракет. Все чаще высокопоставленные чиновники и многозвездные генералы обеих стран заявляют о создании новых видов стратегического оружия и модернизации старых. Одним из направлений новой гонки вооружений стала разработка гиперзвуковых летательных аппаратов, которые можно использовать как эффективное средство доставки ядерных зарядов.

Недавно появилась информация об испытаниях в России нового гиперзвукового беспилотного летательного аппарата Ю-71 с уникальными характеристиками. Новость была замечена в зарубежной прессе, она крайне скудна, и о перспективном комплексе мы не узнали практически ничего. В российских источниках информация еще боле скупа и противоречива, и чтобы в общих чертах понять, что может представлять собой новое оружие Ю-71, нужно вспомнить, для чего вообще военные использовали гиперзвук.

История гиперзвуковых аппаратов

Гиперзвук — далеко не новое направление развития средств нападения. Создание летательных аппаратов со скоростью в несколько раз превышающую скорость звука (более 5 Махов) началось еще в гитлеровской Германии, в самом начале ракетной эры. Эти работы получили мощный толчок после начала ядерной эпохи и шли в нескольких направлениях.

В разных странах стремились создать устройства, способные развивать гиперзвуковую скорость, были попытки создания гиперзвуковых крылатых ракет, а также суборбитальных летательных аппаратов. Большая часть подобных проектов закончилось безрезультатно.

В 60-е годы прошлого столетия в США начались разработки проекта гиперзвукового самолета North American X-15, который мог бы совершать суборбитальные полеты. Тринадцать из его полетов были признаны суборбитальными, их высота превысила 80 километров.

В Советском Союзе был похожий проект под названием «Спираль», который, правда, так и не был воплощён в жизнь. По замыслу советских конструкторов, реактивный самолет-разгонщик должен был достигать гиперзвуковой скорости (6 М), а затем с его спины взлетал суборбитальный аппарат, снабженный ракетными двигателями. Этот аппарат планировали использовать главным образом в военных целях.

Работы в этом направлении ведутся сегодня и частными компаниями, которые планируют использовать подобные аппараты для суборбитального туризма. Однако эти разработки идут уже на современном уровне развития технологий и, скорее всего, закончатся успешно. Сегодня для обеспечения высокой скорости подобных аппаратов часто используют прямоточные воздушно-реактивные двигатели, что позволит сделать использование подобных самолетов или беспилотников сравнительно дешевым.

В этом же направлении продвигается и создание крылатых ракет с гиперзвуковой скоростью. В США развивается правительственная программа Global Prompt Strike (быстрый или молниеносный глобальный удар), которая направлена на обретение возможности наносить в течение одного часа мощный неядерный удар по любой точке планеты. В рамках этой программы разрабатываются новые гиперзвуковые аппараты, способные как нести ядерный заряд, так и обходиться без него. В рамках Global Prompt Strike продвигаются нескольких проектов крылатых ракет с гиперзвуковой скоростью, но похвастать серьезными достижениями в этом направлении американцы пока не могут.

Подобные проекты разрабатываются и в России. Самой быстрой крылатой ракетой, принятой на вооружение, является противокорабельная ракета Brahmos, созданная совместно с Индией.

Если говорить о космических аппаратах, развивающих гиперзвуковую скорость, то следует вспомнить космические корабли многоразового использования, которые развивают во время спуска скорость во много раз больше скорости звука. К подобным кораблям относятся американские шаттлы и советский «Буран», но время их, скорее всего, уже прошло.

Если мы говорим о беспилотных гиперзвуковых летательных аппаратах, то следует отметить гиперзвуковые боевые блоки, которые являются боевой частью баллистических ракетных комплексов. По сути, это боеголовки, способные маневрировать на гиперзвуковых скоростях. Их еще часто называют глайдерами за способность планировать. Сегодня известно о трех странах, в которых ведут работы над подобными проектами — это Россия, США и Китай. Считается, что именно КНР является лидером в данном направлении.

Американский гиперзвуковой боевой блок AHW (Advanced Hypersonic Weapon) прошел два испытания: первое успешно (2011 год), а во время второго ракета взорвалась. По информации некоторых источников, глайдер AHW может развивать скорость до 8 Махов. Разработка этого аппарата проводится в рамках программы Global Prompt Strike.

В 2014 году Китай провел первые успешные испытания нового гиперзвукового аппарата-глайдера WU-14. Есть данные, что этот боевой блок может развивать скорость около 10 Махов. Его можно устанавливать на различные типы китайских баллистических ракет, кроме того, есть информация, что Пекин активно работает над созданием собственного гиперзвукового прямоточного воздушно-реактивного двигателя, который можно будет использовать для создания аппаратов, запускаемых с самолетов.

Российским ответом на разработки стратегических конкурентов должен стать аппарат Ю-71 (проект 4202), который был испытан в начале нынешнего года.

Ю-71: что известно на сегодняшний день

В середине 2019 года большой резонанс вызвала статья в американском издании The Washington Free Beacon. По словам журналистов, в феврале 2019 года в России было проведено испытание нового гиперзвукового летательного аппарата Ю-71 военного назначения. В материале сообщалось, что российский аппарат может развивать скорость до 11 тысяч км/час, а также маневрировать на траектории спуска. Такие характеристики делают его практически неуязвимым для любых современных средств ПРО.

Ю-71 тоже называют глайдером. Запуск его произошел на околоземной орбите, а доставила его туда межконтинентальная баллистическая ракета SS-19 «Стилет» (УР-100 Н). Она стартовала из района дислокации Домбаровского соединения РВСН . По информации того же издания, именно это воинское соединение будет вооружено подобными боевыми блоками-глайдерами до 2025 года.

Эксперты считают, что Ю-71 – это часть сверхсекретного российского проекта 4202, связанного с разработкой нового стратегического оружия, который стартовал в 2009 году. Информации о новом боевом блоке очень мало (что вполне понятно), называется лишь скорость и способность маневрировать на завершающем этапе траектории. Однако даже с такими характеристиками Ю-71 уже не страшны любые средства противоракетной обороны наших дней.

В российском Генеральном штабе еще в 2004 году заявляли, что испытан летательный аппарат, способный развивать гиперзвуковую скорость, совершая при этом маневры как по высоте, так и по курсу. С этим временем совпадает запуск с полигона на Байконуре МБР УР-100Н УТТХ по цели на полигоне Кура.

В 2011 году появилась информация об испытательном запуске баллистической ракеты со специальным оснащением, способным преодолевать современные и перспективные системы ПРО. Вероятно, новым боевым блоком будет оснащена одна из перспективных российских баллистических ракет, чаще всего называется новая ракета «Сармат» (МБР РС-28).

Дело в том, что подобные боевые блоки имеют сравнительно большую массу, поэтому устанавливать их лучше на мощные носители, способные нести сразу несколько Ю-71.

По скудной информации из российских источников, разработкой проекта 4202 занимается НПО Машиностроения в подмосковном городе Реутов. Кроме того, в прессе сообщалось о техническом перевооружении ПО «Стрела» (г. Оренбург), предпринятом с целью участия в проекте 4202.

Боевые блоки современных баллистических ракет на траектории спуска развивают гиперзвуковую скорость и способны совершать довольно сложные маневры. Основным отличием Ю-71 эксперты считают еще более сложный полет, сравнимый с полетом самолета.

В любом случае, принятие подобных блоков на вооружение значительно повысит эффективность российских РВСН.

Есть информация об активной разработке гиперзвуковых крылатых ракет, которые могут стать новым оружием российских боевых самолетов, в частности перспективного стратегического бомбардировщика ПАК ДА. Подобные ракеты представляют весьма нелегкую цель для ракет-перехватчиков комплексов ПРО.

Подобные проекты могут сделать систему противоракетной обороны в целом бесполезной. Дело в том, что объекты, летящие с большой скоростью, перехватить крайне сложно. Для этого у ракет-перехватчиков должна быть большая скорость и возможность маневрировать с огромными перегрузками, и таких ракет пока не существует. Очень тяжело вычислять траектории маневрирующих боевых блоков.

Видео о гиперзвуковом глайдере Ю-71

Если вам надоела реклама на этом сайте - скачайте наше мобильное приложение тут: https://play.google.com/store/apps/details?id=com.news.android.military или ниже, кликнув на логотип Google Play. Там мы уменьшили кол-во рекламных блоков специально для нашей постоянной аудитории.
Также в приложении:
- еще больше новостей
- обновление 24 часа в сутки
- уведомления о главных событиях

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

За тысячелетия человечество выработало правило, по которому, чтобы выжить и одержать победу над противником оружие должно быть точнее, быстрее и мощнее, чем у противника. Таким требованиям соответствует в современных условиях авиационное оружие. В настоящее время за рубежом управляемые авиационные средства поражения (УАСП), в частности, управляемые авиационные бомбы (УАБ), калибр которых лежит в широких пределах – от 9 до 13600 кг, интенсивно развиваются: они оснащаются новыми типами систем наведения и управления, эффективными боевыми частями, совершенствуются способы боевого применения.

УАБ являются непременной принадлежность современных ударных авиационных комплексов (УАК) тактических и стратегического назначения. Несмотря на высокий уровень эффективности современных образцов УАБ, они, находясь в составе УАК, не всегда отвечают требованиям выполнения перспективных боевых задач. Как правило, УАК действуют вблизи линии фронта, при этом вся оперативность утрачивается.

Локальные войны последних десятилетий, и прежде всего военные операции в Ираке и Афганистане, выявили недостаточную оперативность обычного высокоточного оружия, в том числе УАБ. При выполнении боевого задания, проходит слишком большое время с момента обнаружения цели и принятия решения об атаке до ее поражения. Например, бомбардировщик В-2 Spirit, взлетая с аэродрома на территории США, должен лететь 12-15 ч до района атаки цели. Поэтому, в современных условиях требуется оружие быстрого реагирования и высокоточного действия на большом расстоянии, достигающим десятки тысяч км.

Одним из направлений исследований по выполнению указанных требований за рубежом является создание гиперзвуковых ударных систем нового поколения. Работы по созданию гиперзвуковых летательных аппаратов (ЛА) (ракет) и кинетического оружия, обладающего способностью высокоточного поражения целей ведутся в США, Великобритании, Франции и Германии.

Изучение зарубежного опыта для нас является чрезвычайно важным, так как перед отечественным оборонно-промышленным комплексом (ОПК), как отметил Д.Рагозин в своей статье «России нужна умная оборонка» (Газета «Красная Звезда». 2012. – 7 февраля. – С. 3) поставлена задача «в кратчайшие сроки вернуть себе мировое технологическое лидерство в области производства вооружений». Как отмечено в статье В.В.Путина «Быть сильными: гарантии национальной безопасности для России» (Газета «Российская газета». – 2012. – № 5708 (35). – 20 февраля. – С. 1-3) «задача предстоящего десятилетия заключается в том, чтобы новая структура Вооружённых Сил смогла опереться на принципиально новую технику. На технику, которая «видит» дальше, стреляет точнее, реагирует быстрее, чем аналогичные системы любого потенциального противника ».

Чтобы достичь этого, необходимо досконально знать состояние, тенденции и основные направления работ за рубежом. Конечно, всегда наши специалисты при выполнении НИОКР старались выполнить это условие. Но в сегодняшней обстановке, когда «у ОПК нет возможности спокойно догонять кого-то, мы должны совершить прорыв, стать ведущими изобретателями и производителями … Реагировать на угрозы и вызовы только сегодняшнего дня – значит обрекать себя на вечную роль отстающих. Мы должны всеми силами обеспечить техническое, технологическое, организационное превосходство над любым потенциальным противником ».

Считается, что впервые создание гиперзвуковых ЛА было предложено в 1930-х годах в Германии профессором Эйгеном Зенгером и инженером Иреной Бредт . Предлагалось создание горизонтально стартующего на ракетной катапульте самолета, под действием ракетных двигателей разгоняющегося до скорости около 5900 м/с, совершающего трансконтинентальный полет дальностью 5-7 тыс. км по рикошетирующей траектории со сбросом боевой нагрузки массой до 10 т и совершающего самолетную посадку на дальности более 20 тыс. км от точки старта.

Рассматривая развитие ракетного дела 1930-х годов инженер С.Королев и летчик-наблюдатель Е.Бурче (Королев С., Бурче Е. Ракета на войне//Техника-молодежи. – 1935. – №5. – С. 57-59) предложили схему применения ракетного боевого самолета-стратоплана: «Переходя к бомбометанию, необходимо учесть то обстоятельство, что точность попадания с высот, измеряемых десятками километров и при громадных скоростях стратоплана, должны быть ничтожной. Но зато вполне возможно и представляет большое значение подход к цели в стратосфере вне пределов досягаемости наземного оружия, быстрый спуск, бомбометание с обычных высот, обеспечивающих нужную меткость, и затем молниеносный подъем вновь на недосягаемую высоту ».

Концепция глобального удара на основе гиперзвукового оружия

В настоящее время данная идея начинает практически воплощаться. В США в середине 1990-х годов была сформулирована концепция Global Reach – Global Power («Глобальная досягаемость – глобальная мощь»). В соответствии с ней США должны обладать возможностью нанесения ударов по наземным и надводным целям в любой точке планеты в течение 1-2 ч после поступления приказа, без использования зарубежных военных баз с применением обычных средств поражения, например, УАБ.

Осуществить это возможно с использованием нового гиперзвукового оружия, состоящего из гиперзвуковой платформы-носителя и автономного ЛА с боевой нагрузкой, в частности УАБ, Основными свойствами такого оружия является высокая скорость, большая дальность, достаточно высокая маневренность, малая заметность и высокая оперативность применения.

В рамках масштабной программы ВС США Promt Global Strike («Быстрый глобальный удар»), позволяющей нанести удар обычным (неядерным) вооружением кинетического действия по любой точке планеты в течение одного часа, и проводимой в интересах Армии США осуществляется разработка гиперзвуковой ударной системы нового поколения в двух вариантах :

— первый под названием AHW (Advanced Hypersonic Weapon) использует в качестве сверхзвуковой платформы одноразовую ракету-носитель с последующим стартом к цели сверхзвукового ЛА AHW (гиперзвуковой планирующий ЛА можно также назвать маневрирующей боеголовкой), оснащенного управляемыми авиационными бомбами для поражения цели;

— второй под названием ударная гиперзвуковая ударная система FALCON HCV-2 использует гиперзвуковой самолет для создания условий старта автономного гиперзвукового планирующего ЛА CAV, который осуществляет полет к цели и ее поражение с помощью УАБ.

Рис.1 — Варианты конструктивно-аэродинамического облика ударного гиперзвукового ЛА HCV

Первый вариант технического решения имеет существенный недостаток, заключающийся в том, что ракета-носитель, доставляющая гиперзвуковой снаряд в точку старта AHW, может быть принята за ракету с ядерной боеголовкой.

В 2003 г. ВВС и Управление перспективных разработок (DARPA) Министерства обороны США на основе собственных разработок и предложений промышленности по перспективным гиперзвуковым системам разработали новую концепцию перспективной гиперзвуковой ударной системы, получившей название FALCON (Force Application and Launch from Continental US, «Применение силы при запуске с континентальной части Соединенных Штатов») или «Сокол».

Согласно этой концепции ударная система FALCON состоит из гиперзвукового многоразового (например, беспилотного) самолета-носителя HCV (Hypersonic Cruise Vehicle – ЛА, осуществляющий полет на высотах порядка 40-60 км с гиперзвуковой крейсерской скоростью, с массой боевой нагрузки до 5400 кг и дальностью 15-17000 км) и многоразового гиперзвукового высокоманевренного управляемого планера CAV (Common Aero Vehicle – унифицированный автономный ЛА) с аэродинамическим качеством 3-5. Базирование аппаратов HCV предполагается на аэродромах с взлетно-посадочной полосой длиной до 3 км.

Головным разработчиком ударного гиперзвукового аппарата HCV и средства доставки CAV ударной системы FALCON была выбрана корпорация Lockheed-Martin. В 2005 г. она приступила к работам по определению их технического облика и оценке технологической реализуемости проектов. К работам также подключены крупнейшие аэрокосмические фирмы США – Boeing, Northrop Grumman, Andrews Space. В связи с высоким уровнем технологического риска программы были проведены концептуальные исследования нескольких вариантов экспериментальных образцов средств доставки и их носителей с оценкой характеристик маневренности и управляемости.

При сбросе с носителя на гиперзвуковой скорости он может доставлять к цели на дальность до 16000 км различную боевую нагрузку с максимальной массой 500 кг. Аппарат предполагается выполнить по перспективной аэродинамической схеме, обеспечивающей высокое аэродинамическое качество. Для перенацеливания аппарата в полете и поражения выявленных в радиусе до 5400 км целей в состав его оборудования предполагается включить аппаратуру обмена данными в реальном масштабе времени с различными разведывательными системами и пунктами управления.

Поражение стационарных высокозащищенных (заглубленных) целей будет обеспечиваться применением средств поражения калибра 500 кг с проникающей боевой частью. Точность (круговое вероятное отклонение) должно составить около 3 м при скорости встречи с целью до 1200 м/с.

Рис.2 — Автономный гиперзвуковой ЛА CAV

Гиперзвуковой планирующий ЛА CAV с аэродинамическими органами управления имеет массу примерно 900 кг, которых на самолете-носителе может находиться до шести, несет в своем боевом отсеке две обычные авиабомбы массой по 226 кг. Точность применения бомб очень высокая – 3 метра. Дальность действия собственно CAV может составлять около 5000 км. На рис. 2 представлена схема разделения проникающих средств поражения с помощью надувных оболочек.

Схема боевого применения гиперзвуковой ударной системы FALCON выглядит примерно следующим образом. После получения задания гиперзвуковой бомбардировщик HCV взлетает с обычного аэродрома и с помощью комбинированной двигательной установки (ДУ) разгоняется до скорости, примерно соответствующей М=6. При достижении этой скорости ДУ переходит в режим гиперзвукового прямоточного воздушно-реактивного двигателя, разгоняя ЛА до М = 10 и высоты не менее 40 км. В заданный момент происходит отделение от самолета-носителя ударного гиперзвукового планирующего ЛА CAV, которые после выполнения боевого задания по поражению целей возвращаются на аэродром одной из заморских авиабаз США (в случае оснащения CAV собственным двигателем и необходимым запасом топлива он может вернуться и в континентальную часть США) (рис. 3).

Рис.3 — Схема боевого применения ГЛА с использованием волнообразной траектории полета ударного ЛА

Возможно два типа траектории полета. Первый тип характеризует волнообразную траекторию для гиперзвукового ЛА, который предложил еще в годы Второй Мировой войны немецкий инженер Эйген Зенгер в проекте бомбардировщика. Смысл волнообразной траектории в следующем. За счет разгона аппарат выходит из атмосферы и выключает двигатель, экономя топливо. Затем под действием гравитации самолет возвращается в атмосферу и снова включает двигатель (ненадолго, всего лишь на 20-40 с), который опять выбрасывает аппарат в космос.

Такая траектория кроме увеличения дальности способствует и охлаждению конструкции бомбардировщика, когда он находится в космосе. Высота полета не превышает 60 км, а шаг волны составляет около 400 км. Второй тип траектории имеет классическую траекторию прямолинейного полета.

Экспериментальные исследования по созданию гиперзвукового оружия

Были предложены гиперзвуковые модели HTV (Hypersonic Test Vehicle) массой около 900 кг и длиной до 5 м для оценки их летно-технических характеристик, управляемости и тепловых нагрузок на скоростях М = 10 – HTV-1, HTV-2, HTV-3.

Рис.4 — Экспериментальный гиперзвуковой ЛА HTV-1

Аппарат HTV-1 с продолжительность управляемого полета 800 с на скорости М = 10 был снят с испытаний ввиду технологической сложности в изготовлении теплозащитного корпуса и неверных конструктивных решений (рис. 4).

Рис.5 — Экспериментальный гиперзвуковой ЛА HTV-2

Аппарат HTV-2 выполнен по интегральной схеме с острыми передними кромками и обеспечивает качество 3,5-4, что позволит, как полагают разработчики, обеспечить заданную дальность планирования, а также маневренность и управляемость с помощью аэродинамических \щитков для наведения на цель с требуемой точностью (рис. 5). По данным Исследовательской службы Конгресса США (CRS) гиперзвуковой аппарат FALCON HTV-2 способен поражать цели на дальности до 27000 км и развивать скорость до 20 чисел Маха (23000 км /ч).

Рис.6 — Экспериментальный гиперзвуковой ЛА HTV-3

Аппарат HTV-3 представляет масштабную модель гиперзвукового ударного самолета HCV с аэродинамическим качеством 4-5 (рис. 6). Модель предназначена для оценки принятых технологических и конструктивных решений, аэродинамических и летно-технических характеристик, а также маневренности и управляемости в интересах дальнейшей разработки самолета HCV. Летные испытания предполагалось провести в 2009 г. Общая стоимость работ по изготовлению модели и проведению летных испытаний оценивается в 50 млн. долларов.

Проведение испытаний ударного комплекса предполагалось осуществить в 2008-2009 гг. с использованием ракет-носителей. Схема испытательного полета гиперзвукового ЛА HTV-2 представлена на рис. 7.

Как показали проведенные исследования, основные проблемные вопросы по созданию гиперзвукового ЛА будут связаны с разработкой силовой установки, выбором топлива и конструкционных материалов, аэродинамикой и динамикой полета, системой управления.

Рис.7 — Профиль испытательного полета гиперзвукового ЛА HTV-2

Выбор аэродинамической схемы и конструктивной компоновки ЛА должен исходить из условия обеспечения совместной работы воздухозаборника, силовой установки и других элементов ЛА. На гиперзвуковых скоростях вопросы исследования эффективности аэродинамических органов управления, при минимальных площадях стабилизирующих и управляющих поверхностей, шарнирных моментов, в особенности при подлете в район цели на скорости около 1600 м/с, становятся первостепенными, прежде всего, для обеспечения прочности конструкции и высокоточного наведения на цель.

По предварительным исследованиям температура на поверхности гиперзвукового аппарата достигает 1900°С, в то время, как для нормального функционирования бортовой аппаратуры температура внутри отсека должна быть не выше 70°С . Поэтому корпус аппарата должен иметь жаропрочную оболочку из высокотемпературных материалов и многослойную теплозащиту на основе существующих в настоящее время конструктивных материалов.

Гиперзвуковой аппарат оснащается комбинированной инерциально-спутниковой системой управления и в перспективе конечной системой самонаведения оптико-электронного или радиолокационного типа.

Для обеспечения прямолинейного полета наиболее перспективными для военных систем считаются прямоточные двигатели: СПВРД (сверхзвуковой прямоточный воздушно-реактивный двигатель) и ГПВРД (гиперзвуковой прямоточный воздушно-реактивный двигатель). Они просты в конструкции, поскольку практически не имеют подвижных частей (разве что насос подачи горючего) с использованием обычного углеводородного топлива.

Рис.8 — Гиперзвуковой ЛА X-51A

Аэродинамическая схема и конструкция аппарата CAV отрабатываются в рамках проекта Х-41, а самолета-носителя – по программе Х-51. Целью программы Х-51А является демонстрация возможностей создания ГПВРД, разработка термостойких материалов, интеграция планера и двигателя, а также других технологий, необходимых для полета в диапазоне 4,5-6,5 М. В рамках этой программы также ведутся работы по созданию баллистической ракеты с обычной боеголовкой, гиперзвуковой ракеты Х-51A Waverider и орбитального беспилотника Х-37В.

По данным CRS, финансирование программы в 2011 г. составило 239,9 млн. долл., из которых 69 млн. долл. были потрачены на AHW.

Рис.9 — Старт гиперзвукового ЛА AHW с ракеты-носителя

МО США провело очередное испытание новой планирующей гиперзвуковой бомбы AHW (Advanced Hypersonic Weapon). Испытание боеприпаса состоялось 17 ноября 2011 г. Основной целью испытания была проверка боеприпаса на маневренность, управляемость и устойчивость к высокотемпературному воздействию. Известно, что AHW была выведена в верхние слои атмосферы при помощи ракеты-носителя, запущенной с авиабазы на Гавайских островах (рис. 9). После отделения боеприпаса от ракеты, он спланировал и поразил цель на Маршалловых Островах около атолла Кваджалейн, расположенном в четырех тысячах километрах юго-западнее Гавайев, на гиперзвуковой скорости, в пять раз превышающей скорость звука. Полет длился менее 30 мин.

По словам пресс-секретаря Пентагона Мелинды Морган, целью тестирования боеприпаса был сбор данных об аэродинамике AHW, ее управляемости и устойчивости к воздействию высоких температур. Последние испытания HTV-2 состоялись в середине августа 2011 г. и оказались неудачными (рис. 10).

Рис.10 — Автономный гиперзвуковой ЛА HTV-2 в полете

По оценкам экспертов возможно принятие на вооружение ударной гиперзвуковой системы нового поколения первого поколения до 2015 г. Считается необходимым обеспечить с помощью одноразовой ракеты-носителя до 16 стартов в сутки. Стоимость пуска составляет около 5 млн. долларов. Создание полномасштабной ударной системы ожидается не ранее 2025-2030 гг.

Идея о военном применении самолета-стратоплана с ракетным двигателем, предложенная С.Королевым и Е.Бурче в 1930-х годах, судя по исследованиям, проводимым в США, начинает осуществляться в проектах по созданию ударного гиперзвукового оружия нового поколения. Применение УАБ в составе гиперзвукового автономного аппарата при атаке цели предъявляет высокие требования по обеспечению высокоточного наведения в условиях гиперзвукового полета и теплозащиты аппаратуры от воздействия кинетического нагрева.

На примере проводимых в США работ по созданию гиперзвукового оружия мы видим, что возможности по боевому применению УАБ далеко не исчерпаны и определяются они не только тактико-техническими характеристиками собственно УАБ, обеспечивающей заданные дальность, точность и вероятность поражения, но и средствами доставки. Кроме того, осуществление данного проекта, может решить и мирную задачу по оперативной доставке в любую точку земного шара грузов или средств спасения, терпящим бедствие.

Представленный материал заставляет серьезно задуматься над содержанием основных направлений развития отечественных управляемых ударных систем до 2020-2030 гг. При этом, надо учесть высказывание Д.Рогозина (Д.Рогозин, Работа по точному алгоритму // Национальная оборона. – 2012. – № 2. – С. 34-46):

«… мы обязаны отказаться от идеи «догнать и перегнать»… И вряд ли мы в короткий срок соберем силы и возможности, которые позволили бы на неимоверных скоростях догнать высокотехнологичные страны. Это и не нужно делать. Нужно другое, гораздо более сложное … Нужно рассчитать курс ведения вооруженной борьбы с перспективой до 30 лет, определить эту точку, выйти на нее. Понять, что нам нужно, то есть, готовить оружие не завтрашнего и даже не послезавтрашнего дня, а на историческую неделю вперед… Я повторяю, не думайте о том, что сейчас делают в США, во Франции, в Германии, думайте о том, что у них будет через 30 лет. И вы должны создать, то, что будет лучше, чем есть у них сейчас. Не идите за ними следом, попытайтесь понять, куда все клонится, а тогда мы выиграем ».

То есть, необходимо понять – возникла ли для нас подобная задача, а если «да», то как надо ее решать.

/Семёнов С.С., руководитель группы анализа и перспективных исследований ГНПП «Регион», к.т.н., otvaga2004.ru /



Случайные статьи

Вверх